[1]
Yongchang Liu, Yewan Xie, New type high hardenability bearing steel GCr18Mo, Special Steel, 04 (1995): pp.29-33.
Google Scholar
[2]
Revah-Moiseev S, Carroad P A. Effect of Al Content on the Characteristics of Inclusions in Al–Ti Complex Deoxidized Steel with Calcium Treatment. ISIJ International, vol. 54(2014), pp.1755-1764.
DOI: 10.2355/isijinternational.54.1755
Google Scholar
[3]
Zhang G H, Chou K C. Deoxidation of Molten Steel by Aluminum. JOURNAL OF IRON AND STEEL RESEARCH, INTERNATIONAL, vol. 22(2015), pp.905-908.
DOI: 10.1016/s1006-706x(15)30088-1
Google Scholar
[4]
Paek M K, Jang J M, Kang Y B, et al. Aluminum Deoxidation Equilibria in Liquid Iron: Part I. Experimental. Metallurgical and Materials Transactions B, vol. 46(2015), pp.1826-1836.
DOI: 10.1007/s11663-015-0368-0
Google Scholar
[5]
Deng Z, Zhu M. Deoxidation Mechanism of Al-Killed Steel during Industrial Refining Process. ISIJ International, vol. 54(2014), pp.1498-1506.
DOI: 10.2355/isijinternational.54.1498
Google Scholar
[6]
Riyahimalayeri K, Ölund P, Selleby M. Oxygen Activity Calculations of Molten Steel: Comparison With Measured Results. Steel Research International, vol. 84(2013), p.136–145.
DOI: 10.1002/srin.201200114
Google Scholar
[7]
Marie-Aline V E, Guo M, Proost J, et al. Formation and Morphology of Al2O3 Inclusions at the Onset of Liquid Fe Deoxidation by Al Addition. ISIJ International, vol. 51(2011), pp.27-34.
DOI: 10.2355/isijinternational.51.27
Google Scholar
[8]
Kusakawa T, Yoshida C, Tamura Y, et al. The Deoxidation of Steel with Al-Si Alloy[J]. Tetsu- to- Hagane, vol. 59(2010), pp.395-404.
DOI: 10.2355/tetsutohagane1955.59.3_395
Google Scholar
[9]
Steelmaking Data Sourcebook, The Japan Society for the promotion of Science, The 19th Committee on Steelmaking, Gordon and Breach Science Publishers, New York, (1988): pp.38-45.
Google Scholar
[10]
Itoh H, Hino M, Banya S. Thermodynamics on the formation of spinel nonmetallic inclusion in liquid steel, Metallurgical Transactions B, 28 (1997): pp.953-956.
DOI: 10.1007/s11663-997-0023-5
Google Scholar
[11]
J.D. Seo, S.H. Kim, and K.R. Lee: Steel Res, vol. 69 (1998), p.49–53.
Google Scholar
[12]
Y.J. Kang, M. Thunman, D. Sichen, T. Morohoshi, K. Mizukami, and K. Morita: ISIJ Int, vol. 49 (2009), p.1483–89.
DOI: 10.2355/isijinternational.49.1483
Google Scholar
[13]
I.H. Jung, S.A. Decterov, and A.D. Pelton: Metall. Mater. Trans. B, vol. 35B (2004), p.493–507.
Google Scholar
[14]
Ohta H, Suito H. Thermodynamics of aluminum and manganese deoxidization equilibria in Fe-Ni and Fe-Cr alloys, ISIJ International, 43(2003): pp.1301-1308.
DOI: 10.2355/isijinternational.43.1301
Google Scholar
[15]
Xihu Huang, Principles of steel and metallurgy. Beijing: Metallurgical Industry Press, (2002).
Google Scholar
[16]
M. Kishi, R. Inoue and H. Suito: ISIJ, 34(1994), 859.
Google Scholar
[17]
J.H. Swisher: Trans. Metall. Soc. AIME, vol. 239(1967), p.123–24.
Google Scholar
[18]
L.E. Rohde, A. Choudhury, and M. Wahlster: Arch Eisenhuttenwes, vol. 42(1971), p.165–74.
Google Scholar
[19]
D. Janke and W.A. Fischer: Arch. Eisenhuttenwes, vol. 47(1976), p.195–98.
Google Scholar
[20]
V.E. Shevtsov, Russ. Metall, vol. 1(1981), p.52–57.
Google Scholar
[21]
H. Suito, H. Inoue, and R. Inoue: ISIJ Int, vol. 31(1991), p.1381–88.
Google Scholar
[22]
S. Dimitrov, A. Weyl, and D. Janke: Steel Res, vol. 66, (1995), pp.3-7.
Google Scholar