Thermodynamics of Aluminum Deoxidization Equilibria in GCr18Mo Bearing-Steel

Article Preview

Abstract:

Based on the predecessors of thermodynamic data, the relationship between aluminum contents and oxygen contents of the aluminum deoxidization reaction was calculated. And the influence of activity coefficient to the reaction equilibrium in bearing-steel is analyzed. First-order and second-order interaction coefficients were used to calculate and draw the equilibrium curves, respectively. The effects of different temperature and different interaction parameters on the deoxidization equilibrium curves were studied. And through the curve the influence of the change of aluminum contents to the activity can be known. The trend of the curve with first-order interaction parameters is consistent with the curve with first-order and second-order interaction parameters at the low Al concentration region. And the oxygen contents of curve with first-order interaction parameters are higher than the other curve at the high Al concentration region

You might also be interested in these eBooks

Info:

Periodical:

Pages:

80-85

Citation:

Online since:

January 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Yongchang Liu, Yewan Xie, New type high hardenability bearing steel GCr18Mo, Special Steel, 04 (1995): pp.29-33.

Google Scholar

[2] Revah-Moiseev S, Carroad P A. Effect of Al Content on the Characteristics of Inclusions in Al–Ti Complex Deoxidized Steel with Calcium Treatment. ISIJ International, vol. 54(2014), pp.1755-1764.

DOI: 10.2355/isijinternational.54.1755

Google Scholar

[3] Zhang G H, Chou K C. Deoxidation of Molten Steel by Aluminum. JOURNAL OF IRON AND STEEL RESEARCH, INTERNATIONAL, vol. 22(2015), pp.905-908.

DOI: 10.1016/s1006-706x(15)30088-1

Google Scholar

[4] Paek M K, Jang J M, Kang Y B, et al. Aluminum Deoxidation Equilibria in Liquid Iron: Part I. Experimental. Metallurgical and Materials Transactions B, vol. 46(2015), pp.1826-1836.

DOI: 10.1007/s11663-015-0368-0

Google Scholar

[5] Deng Z, Zhu M. Deoxidation Mechanism of Al-Killed Steel during Industrial Refining Process. ISIJ International, vol. 54(2014), pp.1498-1506.

DOI: 10.2355/isijinternational.54.1498

Google Scholar

[6] Riyahimalayeri K, Ölund P, Selleby M. Oxygen Activity Calculations of Molten Steel: Comparison With Measured Results. Steel Research International, vol. 84(2013), p.136–145.

DOI: 10.1002/srin.201200114

Google Scholar

[7] Marie-Aline V E, Guo M, Proost J, et al. Formation and Morphology of Al2O3 Inclusions at the Onset of Liquid Fe Deoxidation by Al Addition. ISIJ International, vol. 51(2011), pp.27-34.

DOI: 10.2355/isijinternational.51.27

Google Scholar

[8] Kusakawa T, Yoshida C, Tamura Y, et al. The Deoxidation of Steel with Al-Si Alloy[J]. Tetsu- to- Hagane, vol. 59(2010), pp.395-404.

DOI: 10.2355/tetsutohagane1955.59.3_395

Google Scholar

[9] Steelmaking Data Sourcebook, The Japan Society for the promotion of Science, The 19th Committee on Steelmaking, Gordon and Breach Science Publishers, New York, (1988): pp.38-45.

Google Scholar

[10] Itoh H, Hino M, Banya S. Thermodynamics on the formation of spinel nonmetallic inclusion in liquid steel, Metallurgical Transactions B, 28 (1997): pp.953-956.

DOI: 10.1007/s11663-997-0023-5

Google Scholar

[11] J.D. Seo, S.H. Kim, and K.R. Lee: Steel Res, vol. 69 (1998), p.49–53.

Google Scholar

[12] Y.J. Kang, M. Thunman, D. Sichen, T. Morohoshi, K. Mizukami, and K. Morita: ISIJ Int, vol. 49 (2009), p.1483–89.

DOI: 10.2355/isijinternational.49.1483

Google Scholar

[13] I.H. Jung, S.A. Decterov, and A.D. Pelton: Metall. Mater. Trans. B, vol. 35B (2004), p.493–507.

Google Scholar

[14] Ohta H, Suito H. Thermodynamics of aluminum and manganese deoxidization equilibria in Fe-Ni and Fe-Cr alloys, ISIJ International, 43(2003): pp.1301-1308.

DOI: 10.2355/isijinternational.43.1301

Google Scholar

[15] Xihu Huang, Principles of steel and metallurgy. Beijing: Metallurgical Industry Press, (2002).

Google Scholar

[16] M. Kishi, R. Inoue and H. Suito: ISIJ, 34(1994), 859.

Google Scholar

[17] J.H. Swisher: Trans. Metall. Soc. AIME, vol. 239(1967), p.123–24.

Google Scholar

[18] L.E. Rohde, A. Choudhury, and M. Wahlster: Arch Eisenhuttenwes, vol. 42(1971), p.165–74.

Google Scholar

[19] D. Janke and W.A. Fischer: Arch. Eisenhuttenwes, vol. 47(1976), p.195–98.

Google Scholar

[20] V.E. Shevtsov, Russ. Metall, vol. 1(1981), p.52–57.

Google Scholar

[21] H. Suito, H. Inoue, and R. Inoue: ISIJ Int, vol. 31(1991), p.1381–88.

Google Scholar

[22] S. Dimitrov, A. Weyl, and D. Janke: Steel Res, vol. 66, (1995), pp.3-7.

Google Scholar