[1]
P. X. Jiang, M. H. Fan, G. S. Si, Z. P. Ren, Thermal hydraulic performance of small scale micro-channel and porous-media heat-exchangers, Int. J. Heat Mass Transfer 44 (2001) 1039–1051.
DOI: 10.1016/s0017-9310(00)00169-1
Google Scholar
[2]
T. C. Hung, Y.-X. Huang, W. M. Yan, Thermal performance analysis of porous microchannel heat sinks with different configuration designs, Int. J. Heat Mass Transfer 66 (2013) 235–243.
DOI: 10.1016/j.ijheatmasstransfer.2013.07.019
Google Scholar
[3]
T. C. Hung, W.-M. Yan, Thermal performance enhancement of microchannel heat sinks with sintered porous media, Numer. Heat Transfer Part A: Appl. 63 (2013) 666–686.
DOI: 10.1080/10407782.2013.751778
Google Scholar
[4]
K. Y. Leong, R. Saidur, S. N. Kazi, A. H. Mamun, Performance investigation of an automotive car radiator operated with nanofluid-based coolants (nanofluid as a coolant in a radiator), Applied Thermal Engineering, 30(17/18) (2010) 2685-2692.
DOI: 10.1016/j.applthermaleng.2010.07.019
Google Scholar
[5]
R. A. Wirtz, P. McKinley, Buoyancy effects on downwards laminar convection between parallel plates. Fundamentals of forced and mixed convection. ASME HTD 42 (1985) 105-112.
Google Scholar
[6]
O. D. Makinde, P.O. Olanrewaju, Buoyancy effects on thermal boundary layer over a vertical plate with a convective surface boundary, J. Fluids Eng. 132 (2010) 044502-4.
DOI: 10.1115/1.4001386
Google Scholar
[7]
O. D. Makinde, Similarity solution for natural convection from a moving vertical plate with internal heat generation and a convective boundary condition, Therm. Sci. 15 (2011) 137-143.
DOI: 10.2298/tsci11s1137m
Google Scholar
[8]
S. U. S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, Developments and Applications of Non-Newtonian Flows. ASME FED 231/MD 66, (1995)99-105.
Google Scholar
[9]
S. M. Peyghambarzadeh, S.H. Hashemabadi, A.R. Chabi, M. Salimi, Performance of water based CuO and Al2O3 nanofluids in a Cu–Be alloy heat sink with rectangular microchannels, Energy Convers. Manage. 86 (2014) 28–38.
DOI: 10.1016/j.enconman.2014.05.013
Google Scholar
[10]
H. F. Oztop, E. Abu-Nada, Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids, International Journal of Heat and Fluid Flow, 29(5) (2008) 1326-1336.
DOI: 10.1016/j.ijheatfluidflow.2008.04.009
Google Scholar
[11]
A. T. Olatundun, O. D. Makinde, Analysis of Blasius flow of hybrid nanofluids over a convectively heated surface. Defect and Diffusion Forum, 377 (2017) 29-41, (2017).
DOI: 10.4028/www.scientific.net/ddf.377.29
Google Scholar
[12]
O. D. Makinde, Effects of viscous dissipation and Newtonian heating on boundary layer flow of nanofluids over a flat plate. International Journal of Numerical Methods for Heat and Fluid flow, 23(8) (2013) 1291-1303.
DOI: 10.1108/hff-12-2011-0258
Google Scholar
[13]
O.D. Makinde, F. Mabood, W.A. Khan, M.S. Tshehla, MHD flow of a variable viscosity nanofluid over a radially stretching convective surface with radiative heat, Journal of Molecular Liquids, 219 (2016) 624-630.
DOI: 10.1016/j.molliq.2016.03.078
Google Scholar
[14]
S. M., S.H. Hashemabadi, A.R. Chabi, M. Salimi, Performance of water based CuO and Al2O3 nanofluids in a Cu–Be alloy heat sink with rectangular microchannels, Energy Convers. Manage. 86 (2014) 28–38.
DOI: 10.1016/j.enconman.2014.05.013
Google Scholar
[15]
O. D. Makinde, T. Iskander, F. Mabood, W.A. Khan, M. S. Tshehla, MHD Couette-Poiseuille flow of variable viscosity nanofluids in a rotating permeable channel with Hall effects, Journal of Molecular Liquids, 221 (2016) 778-787.
DOI: 10.1016/j.molliq.2016.06.037
Google Scholar
[16]
M. G. Reddy, O. D. Makinde, Magnetohydrodynamic peristaltic transport of Jeffery nanofluid in an asymmetric channel. Journal of Molecular Liquids, 223 (2016) 1242-1248.
DOI: 10.1016/j.molliq.2016.09.080
Google Scholar
[17]
S. Rosseland, Astrophysik aud atom-theoretische Grundlagen (Berlin: Springer) (1931) 41-44.
Google Scholar
[18]
O. D. Makinde, K. G. Kumar, S. Manjunatha, B. J. Gireesha, Effect of nonlinear thermal radiation on MHD boundary layer flow and melting heat transfer of micro-polar fluid over a stretching surface with fluid particles suspension, Defect and Diffusion Forum, 378 (2017).
DOI: 10.4028/www.scientific.net/ddf.378.125
Google Scholar
[19]
W. A. Khan, O. D. Makinde, Z. H. Khan, Non-aligned MHD stagnation point flow of variable viscosity nanofluids past a stretching sheet with radiative heat. International Journal of Heat and Mass Transfer, 96 (2016) 525-534.
DOI: 10.1016/j.ijheatmasstransfer.2016.01.052
Google Scholar
[20]
T. Motsumi, O. D. Makinde, Effects of thermal radiation and viscous dissipation on boundary layer flow of nanofluids over a permeable moving at plate, Physica Scripta 86(4), (2012) 045003.
DOI: 10.1088/0031-8949/86/04/045003
Google Scholar
[21]
O.D. Makinde, I. L. Animasaun, Bioconvection in MHD nanofluid flow with nonlinear thermal radiation and quartic autocatalysis chemical reaction past an upper surface of a paraboloid of revolution, International Journal of Thermal Sciences, 109 (2016).
DOI: 10.1016/j.ijthermalsci.2016.06.003
Google Scholar
[22]
A. Bejan, Entropy generation minimization, CRC Press, Boca Raton, Florida, (1996).
Google Scholar
[23]
L.C. Woods, Thermodynamics of Fluid Systems, Oxford University Press, Oxford, UK, (1975).
Google Scholar
[24]
C. T. Nguyen, F. Desgranges, G. Roy, N. Galanis, T. Mare, S. Boucher, H. Angue Minsta, Temperature and particle-size dependent viscosity data for water based nanofluids – hystresis phenomenon. Int. J. Heat Fluid Flow 28 (2007) 1492–1506.
DOI: 10.1016/j.ijheatfluidflow.2007.02.004
Google Scholar
[25]
I. Ullah, S. Shafie, O. D. Makinde, I. Khan: Unsteady MHD Falkner-Skan flow of Casson nanofluid with generative/destructive chemical reaction. Chemical Engineering Science, 172 (2017) 694–706.
DOI: 10.1016/j.ces.2017.07.011
Google Scholar
[26]
S. Das, R. N. Jana, O. D. Makinde: MHD flow of Cu-Al2O3/Water hybrid nanofluid in porous channel: Analysis of entropy generation, Defect and Diffusion Forum, 377(2017) 42-61.
DOI: 10.4028/www.scientific.net/ddf.377.42
Google Scholar
[27]
M.I. Afridi, M. Qasim, O. D. Makinde, Second law analysis of boundary layer flow with variable fluid properties, ASME - Journal of Heat Transfer, 39(10) (2017) 104505.
DOI: 10.1115/1.4036645
Google Scholar
[28]
S. DasAffiliated withDepartment of Mathematics, University of Gour Banga Email author, S. Chakraborty, R. N. Jana, O. D. MakindeAffiliated withFaculty of Military Science, Stellenbosch University, Entropy analysis of unsteady magneto-nanofluid flow past accelerating stretching sheet with convective boundary condition. Applied Mathematics and Mechanics, 36(12) 1593-1610.
DOI: 10.1007/s10483-015-2003-6
Google Scholar
[29]
O. D. Makinde, W. A. Khan, A. Aziz, On inherent irreversibility in Sakiadis flow of nanofluids. International Journal of Exergy, 13(2) (2013) 159-174.
DOI: 10.1504/ijex.2013.056131
Google Scholar
[30]
T. Cebeci, P. Bradshaw, Physical and computational aspects of convective heat transfer, Springer, New York, USA (1988).
Google Scholar