Entropy Analysis of a Radiating Variable Viscosity EG/Ag Nanofluid Flow in Microchannels with Buoyancy Force and Convective Cooling

Article Preview

Abstract:

The inherent irreversibility of a variable viscosity ethylene glycol/silver (EG/Ag) nanofluid single-phase Poiseuille flow in a vertical microchannel with convective cooling under the combined influence of buoyancy force, nonlinear thermal radiation, nanoparticles shape and volume fraction is investigated. The nonlinear model equations are obtained and numerically solved via shooting method with Runge-Kutta-Fehlberg integration scheme. Pertinent results with respect to the effects of emerging thermophysical parameters on the nanofluid velocity, temperature, skin friction, Nusselt number, thermal stability criteria, entropy generation rate and Bejan number are presented graphically and discussed. It is observed that thermal radiation, Biot number and buoyancy force boost the release of heat energy thereby cooling the flow system. Meanwhile, an increase in nanoparticles volume fraction lessens the entropy generation rate which augment the exergetic effectiveness and thermal stability of the flow system.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

273-285

Citation:

Online since:

September 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. X. Jiang, M. H. Fan, G. S. Si, Z. P. Ren, Thermal hydraulic performance of small scale micro-channel and porous-media heat-exchangers, Int. J. Heat Mass Transfer 44 (2001) 1039–1051.

DOI: 10.1016/s0017-9310(00)00169-1

Google Scholar

[2] T. C. Hung, Y.-X. Huang, W. M. Yan, Thermal performance analysis of porous microchannel heat sinks with different configuration designs, Int. J. Heat Mass Transfer 66 (2013) 235–243.

DOI: 10.1016/j.ijheatmasstransfer.2013.07.019

Google Scholar

[3] T. C. Hung, W.-M. Yan, Thermal performance enhancement of microchannel heat sinks with sintered porous media, Numer. Heat Transfer Part A: Appl. 63 (2013) 666–686.

DOI: 10.1080/10407782.2013.751778

Google Scholar

[4] K. Y. Leong, R. Saidur, S. N. Kazi, A. H. Mamun, Performance investigation of an automotive car radiator operated with nanofluid-based coolants (nanofluid as a coolant in a radiator), Applied Thermal Engineering, 30(17/18) (2010) 2685-2692.

DOI: 10.1016/j.applthermaleng.2010.07.019

Google Scholar

[5] R. A. Wirtz, P. McKinley, Buoyancy effects on downwards laminar convection between parallel plates. Fundamentals of forced and mixed convection. ASME HTD 42 (1985) 105-112.

Google Scholar

[6] O. D. Makinde, P.O. Olanrewaju, Buoyancy effects on thermal boundary layer over a vertical plate with a convective surface boundary, J. Fluids Eng. 132 (2010) 044502-4.

DOI: 10.1115/1.4001386

Google Scholar

[7] O. D. Makinde, Similarity solution for natural convection from a moving vertical plate with internal heat generation and a convective boundary condition, Therm. Sci. 15 (2011) 137-143.

DOI: 10.2298/tsci11s1137m

Google Scholar

[8] S. U. S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, Developments and Applications of Non-Newtonian Flows. ASME FED 231/MD 66, (1995)99-105.

Google Scholar

[9] S. M. Peyghambarzadeh, S.H. Hashemabadi, A.R. Chabi, M. Salimi, Performance of water based CuO and Al2O3 nanofluids in a Cu–Be alloy heat sink with rectangular microchannels, Energy Convers. Manage. 86 (2014) 28–38.

DOI: 10.1016/j.enconman.2014.05.013

Google Scholar

[10] H. F. Oztop, E. Abu-Nada, Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids, International Journal of Heat and Fluid Flow, 29(5) (2008) 1326-1336.

DOI: 10.1016/j.ijheatfluidflow.2008.04.009

Google Scholar

[11] A. T. Olatundun, O. D. Makinde, Analysis of Blasius flow of hybrid nanofluids over a convectively heated surface. Defect and Diffusion Forum, 377 (2017) 29-41, (2017).

DOI: 10.4028/www.scientific.net/ddf.377.29

Google Scholar

[12] O. D. Makinde, Effects of viscous dissipation and Newtonian heating on boundary layer flow of nanofluids over a flat plate. International Journal of Numerical Methods for Heat and Fluid flow, 23(8) (2013) 1291-1303.

DOI: 10.1108/hff-12-2011-0258

Google Scholar

[13] O.D. Makinde, F. Mabood, W.A. Khan, M.S. Tshehla, MHD flow of a variable viscosity nanofluid over a radially stretching convective surface with radiative heat, Journal of Molecular Liquids, 219 (2016) 624-630.

DOI: 10.1016/j.molliq.2016.03.078

Google Scholar

[14] S. M., S.H. Hashemabadi, A.R. Chabi, M. Salimi, Performance of water based CuO and Al2O3 nanofluids in a Cu–Be alloy heat sink with rectangular microchannels, Energy Convers. Manage. 86 (2014) 28–38.

DOI: 10.1016/j.enconman.2014.05.013

Google Scholar

[15] O. D. Makinde, T. Iskander, F. Mabood, W.A. Khan, M. S. Tshehla, MHD Couette-Poiseuille flow of variable viscosity nanofluids in a rotating permeable channel with Hall effects, Journal of Molecular Liquids, 221 (2016) 778-787.

DOI: 10.1016/j.molliq.2016.06.037

Google Scholar

[16] M. G. Reddy, O. D. Makinde, Magnetohydrodynamic peristaltic transport of Jeffery nanofluid in an asymmetric channel. Journal of Molecular Liquids, 223 (2016) 1242-1248.

DOI: 10.1016/j.molliq.2016.09.080

Google Scholar

[17] S. Rosseland, Astrophysik aud atom-theoretische Grundlagen (Berlin: Springer) (1931) 41-44.

Google Scholar

[18] O. D. Makinde, K. G. Kumar, S. Manjunatha, B. J. Gireesha, Effect of nonlinear thermal radiation on MHD boundary layer flow and melting heat transfer of micro-polar fluid over a stretching surface with fluid particles suspension, Defect and Diffusion Forum, 378 (2017).

DOI: 10.4028/www.scientific.net/ddf.378.125

Google Scholar

[19] W. A. Khan, O. D. Makinde, Z. H. Khan, Non-aligned MHD stagnation point flow of variable viscosity nanofluids past a stretching sheet with radiative heat. International Journal of Heat and Mass Transfer, 96 (2016) 525-534.

DOI: 10.1016/j.ijheatmasstransfer.2016.01.052

Google Scholar

[20] T. Motsumi, O. D. Makinde, Effects of thermal radiation and viscous dissipation on boundary layer flow of nanofluids over a permeable moving at plate, Physica Scripta 86(4), (2012) 045003.

DOI: 10.1088/0031-8949/86/04/045003

Google Scholar

[21] O.D. Makinde, I. L. Animasaun, Bioconvection in MHD nanofluid flow with nonlinear thermal radiation and quartic autocatalysis chemical reaction past an upper surface of a paraboloid of revolution, International Journal of Thermal Sciences, 109 (2016).

DOI: 10.1016/j.ijthermalsci.2016.06.003

Google Scholar

[22] A. Bejan, Entropy generation minimization, CRC Press, Boca Raton, Florida, (1996).

Google Scholar

[23] L.C. Woods, Thermodynamics of Fluid Systems, Oxford University Press, Oxford, UK, (1975).

Google Scholar

[24] C. T. Nguyen, F. Desgranges, G. Roy, N. Galanis, T. Mare, S. Boucher, H. Angue Minsta, Temperature and particle-size dependent viscosity data for water based nanofluids – hystresis phenomenon. Int. J. Heat Fluid Flow 28 (2007) 1492–1506.

DOI: 10.1016/j.ijheatfluidflow.2007.02.004

Google Scholar

[25] I. Ullah, S. Shafie, O. D. Makinde, I. Khan: Unsteady MHD Falkner-Skan flow of Casson nanofluid with generative/destructive chemical reaction. Chemical Engineering Science, 172 (2017) 694–706.

DOI: 10.1016/j.ces.2017.07.011

Google Scholar

[26] S. Das, R. N. Jana, O. D. Makinde: MHD flow of Cu-Al2O3/Water hybrid nanofluid in porous channel: Analysis of entropy generation, Defect and Diffusion Forum, 377(2017) 42-61.

DOI: 10.4028/www.scientific.net/ddf.377.42

Google Scholar

[27] M.I. Afridi, M. Qasim, O. D. Makinde, Second law analysis of boundary layer flow with variable fluid properties, ASME - Journal of Heat Transfer, 39(10) (2017) 104505.

DOI: 10.1115/1.4036645

Google Scholar

[28] S. DasAffiliated withDepartment of Mathematics, University of Gour Banga Email author, S. Chakraborty, R. N. Jana, O. D. MakindeAffiliated withFaculty of Military Science, Stellenbosch University, Entropy analysis of unsteady magneto-nanofluid flow past accelerating stretching sheet with convective boundary condition. Applied Mathematics and Mechanics, 36(12) 1593-1610.

DOI: 10.1007/s10483-015-2003-6

Google Scholar

[29] O. D. Makinde, W. A. Khan, A. Aziz, On inherent irreversibility in Sakiadis flow of nanofluids. International Journal of Exergy, 13(2) (2013) 159-174.

DOI: 10.1504/ijex.2013.056131

Google Scholar

[30] T. Cebeci, P. Bradshaw, Physical and computational aspects of convective heat transfer, Springer, New York, USA (1988).

Google Scholar