[1]
P. Forchheimer,Wasserbewegung durch boden, Zeitschrift Ver. D. Ing. 45 (1901) 1782-1788.
Google Scholar
[2]
M. Muskat, The flow of homogeneous fluids through porous media, Edwards, MI (1946).
Google Scholar
[3]
A.V. Shenoy, Darcy–Forchheimer natural, forced and mixed convection heat transfer in non-Newtonian power-law fluid-saturated porous media, Transport in Porous Media 11 (1993) 219-241.
DOI: 10.1007/bf00614813
Google Scholar
[4]
M.A. Seddeek, Influence of viscous dissipation and thermophoresis on Darcy–Forchheimer mixed convection in a fluid saturated porous media, J. Colloid Interface Sci. 293 (2006) 137-142.
DOI: 10.1016/j.jcis.2005.06.039
Google Scholar
[5]
D. Pal, H. Mondal, Hydromagnetic convective diffusion of species in Darcy–Forchheimer porous medium with non-uniform heat source/sink and variable viscosity, Int. Commun. Heat Mass Transfer 39 (2012) 913–917.
DOI: 10.1016/j.icheatmasstransfer.2012.05.012
Google Scholar
[6]
S.A. Shehzad, F.M. Abbasi, T. Hayat, A. Alsaedi, Cattaneo-Christov heat flux model for Darcy-Forchheimer flow of an Oldroyd-B fluid with variable conductivity and non-linear convection, J. Mol. Liq. 224 (2013) 274-278.
DOI: 10.1016/j.molliq.2016.09.109
Google Scholar
[7]
T. Hayat, T. Muhammad, S. Al-Mezal, S.J. Liao, Darcy–Forchheimer flow with variable thermal conductivity and cattaneo-christov heat flux, Int. J. Numer. Methods Heat Fluid Flow 26 (2016) 2355–2369.
DOI: 10.1108/hff-08-2015-0333
Google Scholar
[8]
N.V. Ganesh, A.K.A. Hakeem, B. Ganga, Darcy–Forchheimer flow of hydromagnetic nanofluid over a stretching/shrinking sheet in a thermally stratified porous medium with second order slip, viscous and Ohmic dissipations effects, Ain Shams Eng. J. 201 (2016).
DOI: 10.1016/j.asej.2016.04.019
Google Scholar
[9]
M.A. Sadiq, T. Hayat, Darcy-Forchheimer flow of magneto Maxwell liquid bounded by convectively heated sheet, Results Phys. 6 (2016) 884-890.
DOI: 10.1016/j.rinp.2016.10.019
Google Scholar
[10]
M.A. Sadiq, T. Hayat, Darcy–Forchheimer stretched flow of MHD Maxwell material with heterogeneous and homogeneous reactions, Neural Comput. & Applic. (2017) DOI 10.1007/s00521-017-3037-1.
DOI: 10.1007/s00521-017-3037-1
Google Scholar
[11]
T. Hayat, F. Shah, A. Alsaedi, Z. Hussain, Outcome of homogeneous and heterogeneous reactions in Darcy-Forchheimer flow with nonlinear thermal radiation and convective condition, Results in Physics 7 (2017) 2497-2505.
DOI: 10.1016/j.rinp.2017.06.045
Google Scholar
[12]
M.A. Meraj, S.A. Shehzad, T. Hayat, F.M. Abbasi, A. Alsaedi, Darcy-Forchheimer flow of variable conductivity Jeffrey liquid with Cattaneo-Christov heat flux theory, Appl. Math. Mech. -Engl. Ed. 38 (2017) 557-566.
DOI: 10.1007/s10483-017-2188-6
Google Scholar
[13]
S. Choi, Enhancing thermal conductivity of fluids with nanoparticle in: D. A. Siginer, H. P. Wang (Eds.), Developments and Applications of Non – Newtonian Flows. ASME MD 231 (1995) 99-105.
Google Scholar
[14]
S. Choi, Z.G. Zhang, W. Yu, F.E. Lockwood, E.A. Grulke, Anomalously thermal conductivity enhancement in nanotube suspensions, Applied Physics Letters 79 (2001) 2252-2254.
DOI: 10.1063/1.1408272
Google Scholar
[15]
A.B. Duncan, G.P. Peterson, Review of microscale heat transfer, Appl. Mech. Rev. 47 (1994) 397-428.
Google Scholar
[16]
J. Buongiorno, Convective transport in nanofluids, J. Heat Transfer 128 (2006) 240-250.
DOI: 10.1115/1.2150834
Google Scholar
[17]
D.A. Nield, A.V. Kuznetsov, The cheng-minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid, Int. J. Heat and Mass Trans. 52 (2009) 5792-5795.
DOI: 10.1016/j.ijheatmasstransfer.2009.07.024
Google Scholar
[18]
W.A. Khan, A. Aziz, Natural convection flow of a nanofluid over a vertical plate with uniform surface heat flux, Int. J. Thermal Sciences 50 (2011) 1207-1214.
DOI: 10.1016/j.ijthermalsci.2011.02.015
Google Scholar
[19]
N. Bachok, A. Ishak, I. Pop, Boundary layer flow of nanofluids over a moving surface in a flowing fluid, Int. J. of Thermal Sci. 49 (2010) 1663-1668.
DOI: 10.1016/j.ijthermalsci.2010.01.026
Google Scholar
[20]
W.A. Khan, I. Pop, Boundary layer flow of a nanofluid past a stretching sheet, Int. J. Heat and Mass Transfer. 53 (2010) 2477-2483.
DOI: 10.1016/j.ijheatmasstransfer.2010.01.032
Google Scholar
[21]
S. Nadeem, C. Lee, Boundary layer flow of a nanofluid over an exponentially stretching surface, Nanoscale Res Lett. 7 (2012) 1-6.
DOI: 10.1186/1556-276x-7-94
Google Scholar
[22]
O.D. Makinde, F. Mabood, W.A. Khan, M.S. Tshehla, MHD flow of a variable viscosity nanofluid over a radially stretching convective surface with radiative heat, Journal of Molecular Liquids 219 (2016) 624–630.
DOI: 10.1016/j.molliq.2016.03.078
Google Scholar
[23]
S.A. Shehzad, Z. Abdullah, A. Alsaedi, F.M. Abbasi, T. Hayat, Thermally radiative three-dimensional flow of Jeffrey nanofluid with internal heat generation and magnetic field, J. Magnetism and Magnetic Materials 397 (2016) 108-114.
DOI: 10.1016/j.jmmm.2015.07.057
Google Scholar
[24]
S. Das, J. Rabindra Nath, O.D. Makinde, MHD flow of Cu-Al2O3/water hybrid nanofluid in porous channel: analysis of entropy generation Defect and Diffusion Forum 377 (2017) 42-61.
DOI: 10.4028/www.scientific.net/ddf.377.42
Google Scholar
[25]
K. Sreelakshmi, G. Sarojamma, J.V. Ramana Moorthy, Homotopy analysis of an unsteady flow heat transfer of a Jeffrey nanofluid over a radially stretching convective surface, Journal of Nanofluids 7 (2018) 62-71.
DOI: 10.1166/jon.2018.1432
Google Scholar
[26]
C.C. Chen, R. Eichhorn, Natural convection from a vertical surface to stratified fluid, ASME J. Heat Trans. 98 (1976) 446-451.
DOI: 10.1115/1.3450574
Google Scholar
[27]
A.K. Kulkarni, H.R. Jacob, J.J. Hwang, Similarity solution for natural convection flow over an isothermal vertical wall immersed in a thermally stratified medium, Int. J. of Heat and Mass Trans. 30 (1987) 691-698.
DOI: 10.1016/0017-9310(87)90199-2
Google Scholar
[28]
S.C. Saha, M.A. Hossain, Natural Convection flow with combined buoyancy effects due to thermal and mass diffusions in a thermally stratified media, Non Linear Analysis Modell. Control. 9 (2004) 89-102.
DOI: 10.15388/na.2004.9.1.15173
Google Scholar
[29]
C.L. Chang, Z.Y. Lee, Free convection on a vertical plate with uniform and constant heat flux in a thermally stratified micropolar fluid, Mech. Res. Commun. 35 (2008) 421-427.
DOI: 10.1016/j.mechrescom.2008.03.007
Google Scholar
[30]
C.Y. Cheng, Combined heat and mass transfer in natural convection flow from a vertical wavy surface in a power-law fluid saturated porous medium with thermal and mass stratification, Int. Commun. Heat Mass Transfer 36 (2009) 351-356.
DOI: 10.1016/j.icheatmasstransfer.2009.01.003
Google Scholar
[31]
D. Srinivasacharya, C.R. Reddy, Effect of double stratification on mixed convection in a micropolar fluid, Matematika 28 (2012) 133-149.
Google Scholar
[32]
D. Srinivasacharya, M. Upendar, Effect of double stratification on MHD free convection in a micropolar fluid, Journal of the Egyptian Mathematical Society 21 (2013) 370-378.
DOI: 10.1016/j.joems.2013.02.006
Google Scholar
[33]
W. Ibrahim, O.D. Makinde, The effect of double stratification on boundary-layer flow and heat transfer of nanofluid over a vertical plate, Computers & Fluids 86 (2013) 433-441.
DOI: 10.1016/j.compfluid.2013.07.029
Google Scholar
[34]
A.M. Rashad, S. Abbasbandy, A.J. Chamkha, Mixed convection flow of a micropolar fluid over a continuously moving vertical surface immersed in a thermally and solutally stratified medium with chemical reaction, Journal of the Taiwan Institute of Chemical Engineers 45 (2014).
DOI: 10.1016/j.jtice.2014.07.002
Google Scholar
[35]
T. Hayat, M. Farooq, A. Alsaedi, Thermally stratified stagnation point flow of Casson fluid with slip conditions, International Journal of Numerical Methods for Heat and Fluid Flow 25 (2015) 724–748.
DOI: 10.1108/hff-05-2014-0145
Google Scholar
[36]
K. Singh, M. Kumar, The effect of chemical reaction and double stratification on MHD free convection in a micropolar fluid with heat generation and Ohmic heating, Jordan Journal of Mechanical and Industrial Engineering 9 (2015) 279–288.
Google Scholar
[37]
Y.S. Daniel, Z.A. Aziz, Z. Ismail, F. Salah, Double stratification effects on unsteady electrical MHD mixed convection flow of nanofluid with viscous dissipation and Joule heating, Journal of Applied Research and Technology 15 (2017) 464–476.
DOI: 10.1016/j.jart.2017.05.007
Google Scholar
[38]
T. Hayat, M.I. Khan, M. Farooq, A. Alsaedi, M.A. Waqas, T. Yasmeen, Impact of Cattaneo-Christov heat flux model in flow of variable thermal conductivity fluid over a variable thicked surface, Int. J. Heat Mass Transfer 99 (2016) 702-710.
DOI: 10.1016/j.ijheatmasstransfer.2016.04.016
Google Scholar