Dual Stratification on the Darcy-Forchheimer Flow of a Maxwell Nanofluid over a Stretching Surface

Article Preview

Abstract:

The present study discusses two dimensional Darcy-Forchheimer steady flow of a doubly stratified Maxwell nanofluid over a sheet of continuous stretching. Analysis of thermal energy and species concentration is carried out incorporating radiative heat, thermal and solutal stratifications, Brownian motion and thermophoresis. By introducing suitable transformations the system of equations of the flow are recast into a set of nonlinear ODEs which are then solved numerically by using the RKF-45 method. Flow characteristics are deliberated for different variations of governing parameters. Surface drag force, thermal energy and mass transfer rates are computed and discussed. Favourable comparisons with published work in the literature for different special cases of the problem are examined.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

207-217

Citation:

Online since:

September 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Forchheimer,Wasserbewegung durch boden, Zeitschrift Ver. D. Ing. 45 (1901) 1782-1788.

Google Scholar

[2] M. Muskat, The flow of homogeneous fluids through porous media, Edwards, MI (1946).

Google Scholar

[3] A.V. Shenoy, Darcy–Forchheimer natural, forced and mixed convection heat transfer in non-Newtonian power-law fluid-saturated porous media, Transport in Porous Media 11 (1993) 219-241.

DOI: 10.1007/bf00614813

Google Scholar

[4] M.A. Seddeek, Influence of viscous dissipation and thermophoresis on Darcy–Forchheimer mixed convection in a fluid saturated porous media, J. Colloid Interface Sci. 293 (2006) 137-142.

DOI: 10.1016/j.jcis.2005.06.039

Google Scholar

[5] D. Pal, H. Mondal, Hydromagnetic convective diffusion of species in Darcy–Forchheimer porous medium with non-uniform heat source/sink and variable viscosity, Int. Commun. Heat Mass Transfer 39 (2012) 913–917.

DOI: 10.1016/j.icheatmasstransfer.2012.05.012

Google Scholar

[6] S.A. Shehzad, F.M. Abbasi, T. Hayat, A. Alsaedi, Cattaneo-Christov heat flux model for Darcy-Forchheimer flow of an Oldroyd-B fluid with variable conductivity and non-linear convection, J. Mol. Liq. 224 (2013) 274-278.

DOI: 10.1016/j.molliq.2016.09.109

Google Scholar

[7] T. Hayat, T. Muhammad, S. Al-Mezal, S.J. Liao, Darcy–Forchheimer flow with variable thermal conductivity and cattaneo-christov heat flux, Int. J. Numer. Methods Heat Fluid Flow 26 (2016) 2355–2369.

DOI: 10.1108/hff-08-2015-0333

Google Scholar

[8] N.V. Ganesh, A.K.A. Hakeem, B. Ganga, Darcy–Forchheimer flow of hydromagnetic nanofluid over a stretching/shrinking sheet in a thermally stratified porous medium with second order slip, viscous and Ohmic dissipations effects, Ain Shams Eng. J. 201 (2016).

DOI: 10.1016/j.asej.2016.04.019

Google Scholar

[9] M.A. Sadiq, T. Hayat, Darcy-Forchheimer flow of magneto Maxwell liquid bounded by convectively heated sheet, Results Phys. 6 (2016) 884-890.

DOI: 10.1016/j.rinp.2016.10.019

Google Scholar

[10] M.A. Sadiq, T. Hayat, Darcy–Forchheimer stretched flow of MHD Maxwell material with heterogeneous and homogeneous reactions, Neural Comput. & Applic. (2017) DOI 10.1007/s00521-017-3037-1.

DOI: 10.1007/s00521-017-3037-1

Google Scholar

[11] T. Hayat, F. Shah, A. Alsaedi, Z. Hussain, Outcome of homogeneous and heterogeneous reactions in Darcy-Forchheimer flow with nonlinear thermal radiation and convective condition, Results in Physics 7 (2017) 2497-2505.

DOI: 10.1016/j.rinp.2017.06.045

Google Scholar

[12] M.A. Meraj, S.A. Shehzad, T. Hayat, F.M. Abbasi, A. Alsaedi, Darcy-Forchheimer flow of variable conductivity Jeffrey liquid with Cattaneo-Christov heat flux theory, Appl. Math. Mech. -Engl. Ed. 38 (2017) 557-566.

DOI: 10.1007/s10483-017-2188-6

Google Scholar

[13] S. Choi, Enhancing thermal conductivity of fluids with nanoparticle in: D. A. Siginer, H. P. Wang (Eds.), Developments and Applications of Non – Newtonian Flows. ASME MD 231 (1995) 99-105.

Google Scholar

[14] S. Choi, Z.G. Zhang, W. Yu, F.E. Lockwood, E.A. Grulke, Anomalously thermal conductivity enhancement in nanotube suspensions, Applied Physics Letters 79 (2001) 2252-2254.

DOI: 10.1063/1.1408272

Google Scholar

[15] A.B. Duncan, G.P. Peterson, Review of microscale heat transfer, Appl. Mech. Rev. 47 (1994) 397-428.

Google Scholar

[16] J. Buongiorno, Convective transport in nanofluids, J. Heat Transfer 128 (2006) 240-250.

DOI: 10.1115/1.2150834

Google Scholar

[17] D.A. Nield, A.V. Kuznetsov, The cheng-minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid, Int. J. Heat and Mass Trans. 52 (2009) 5792-5795.

DOI: 10.1016/j.ijheatmasstransfer.2009.07.024

Google Scholar

[18] W.A. Khan, A. Aziz, Natural convection flow of a nanofluid over a vertical plate with uniform surface heat flux, Int. J. Thermal Sciences 50 (2011) 1207-1214.

DOI: 10.1016/j.ijthermalsci.2011.02.015

Google Scholar

[19] N. Bachok, A. Ishak, I. Pop, Boundary layer flow of nanofluids over a  moving surface in  a flowing fluid, Int. J. of Thermal Sci. 49 (2010) 1663-1668.

DOI: 10.1016/j.ijthermalsci.2010.01.026

Google Scholar

[20] W.A. Khan, I. Pop, Boundary layer flow of a nanofluid past a stretching sheet, Int. J. Heat and Mass Transfer. 53 (2010) 2477-2483.

DOI: 10.1016/j.ijheatmasstransfer.2010.01.032

Google Scholar

[21] S. Nadeem, C. Lee, Boundary layer flow of a nanofluid over an   exponentially stretching surface, Nanoscale Res Lett. 7 (2012) 1-6.

DOI: 10.1186/1556-276x-7-94

Google Scholar

[22] O.D. Makinde, F. Mabood, W.A. Khan, M.S. Tshehla, MHD flow of a variable viscosity nanofluid over a radially stretching convective surface with radiative heat, Journal of Molecular Liquids 219 (2016) 624–630.

DOI: 10.1016/j.molliq.2016.03.078

Google Scholar

[23] S.A. Shehzad, Z. Abdullah, A. Alsaedi, F.M. Abbasi, T. Hayat, Thermally radiative three-dimensional flow of Jeffrey nanofluid with internal heat generation and magnetic field, J. Magnetism and Magnetic Materials 397 (2016) 108-114.

DOI: 10.1016/j.jmmm.2015.07.057

Google Scholar

[24] S. Das, J. Rabindra Nath, O.D. Makinde, MHD flow of Cu-Al2O3/water hybrid nanofluid in porous channel: analysis of entropy generation Defect and Diffusion Forum 377 (2017) 42-61.

DOI: 10.4028/www.scientific.net/ddf.377.42

Google Scholar

[25] K. Sreelakshmi, G. Sarojamma, J.V. Ramana Moorthy, Homotopy analysis of an unsteady flow heat transfer of a Jeffrey nanofluid over a radially stretching convective surface, Journal of Nanofluids 7 (2018) 62-71.

DOI: 10.1166/jon.2018.1432

Google Scholar

[26] C.C. Chen, R. Eichhorn, Natural convection from a vertical surface to stratified fluid, ASME J. Heat Trans. 98 (1976) 446-451.

DOI: 10.1115/1.3450574

Google Scholar

[27] A.K. Kulkarni, H.R. Jacob, J.J. Hwang, Similarity solution for natural convection flow over an isothermal vertical wall immersed in a thermally stratified medium, Int. J. of Heat and Mass Trans. 30 (1987) 691-698.

DOI: 10.1016/0017-9310(87)90199-2

Google Scholar

[28] S.C. Saha, M.A. Hossain, Natural Convection flow with combined buoyancy effects due to thermal and mass diffusions in a thermally stratified media, Non Linear Analysis Modell. Control. 9 (2004) 89-102.

DOI: 10.15388/na.2004.9.1.15173

Google Scholar

[29] C.L. Chang, Z.Y. Lee, Free convection on a vertical plate with uniform and constant heat flux in a thermally stratified micropolar fluid, Mech. Res. Commun. 35 (2008) 421-427.

DOI: 10.1016/j.mechrescom.2008.03.007

Google Scholar

[30] C.Y. Cheng, Combined heat and mass transfer in natural convection flow from a vertical wavy surface in a power-law fluid saturated porous medium with thermal and mass stratification, Int. Commun. Heat Mass Transfer 36 (2009) 351-356.

DOI: 10.1016/j.icheatmasstransfer.2009.01.003

Google Scholar

[31] D. Srinivasacharya, C.R. Reddy, Effect of double stratification on mixed convection in a micropolar fluid, Matematika 28 (2012) 133-149.

Google Scholar

[32] D. Srinivasacharya, M. Upendar, Effect of double stratification on MHD free convection in a micropolar fluid, Journal of the Egyptian Mathematical Society 21 (2013) 370-378.

DOI: 10.1016/j.joems.2013.02.006

Google Scholar

[33] W. Ibrahim, O.D. Makinde, The effect of double stratification on boundary-layer flow and heat transfer of nanofluid over a vertical plate, Computers & Fluids 86 (2013) 433-441.

DOI: 10.1016/j.compfluid.2013.07.029

Google Scholar

[34] A.M. Rashad, S. Abbasbandy, A.J. Chamkha, Mixed convection flow of a micropolar fluid over a continuously moving vertical surface immersed in a thermally and solutally stratified medium with chemical reaction, Journal of the Taiwan Institute of Chemical Engineers 45 (2014).

DOI: 10.1016/j.jtice.2014.07.002

Google Scholar

[35] T. Hayat, M. Farooq, A. Alsaedi, Thermally stratified stagnation point flow of Casson fluid with slip conditions, International Journal of Numerical Methods for Heat and Fluid Flow 25 (2015) 724–748.

DOI: 10.1108/hff-05-2014-0145

Google Scholar

[36] K. Singh, M. Kumar, The effect of chemical reaction and double stratification on MHD free convection in a micropolar fluid with heat generation and Ohmic heating, Jordan Journal of Mechanical and Industrial Engineering 9 (2015) 279–288.

Google Scholar

[37] Y.S. Daniel, Z.A. Aziz, Z. Ismail, F. Salah, Double stratification effects on unsteady electrical MHD mixed convection flow of nanofluid with viscous dissipation and Joule heating, Journal of Applied Research and Technology 15 (2017) 464–476.

DOI: 10.1016/j.jart.2017.05.007

Google Scholar

[38] T. Hayat, M.I. Khan, M. Farooq, A. Alsaedi, M.A. Waqas, T. Yasmeen, Impact of Cattaneo-Christov heat flux model in flow of variable thermal conductivity fluid over a variable thicked surface, Int. J. Heat Mass Transfer 99 (2016) 702-710.

DOI: 10.1016/j.ijheatmasstransfer.2016.04.016

Google Scholar