Heterogeneous and Homogeneous Reaction Analysis on MHD Oldroyd-B Fluid with Cattaneo-Christov Heat Flux Model and Convective Heating

Article Preview

Abstract:

The impact of Cattaneo-Christov heat flux model for the MHD flow of an Oldroyd-B fluid on a stretching plate with convective heating and heterogeneous-homogeneous chemical reactions were analyzed. The governing PDE’s are converted into a nonlinear ODE’s with appropriate similarity variables and it is solved using homotopy analysis method (HAM). The graphical results of velocity, temperature and concentration profiles are presented(detailed). We found that the fluid velocity reduces with enhancing the injection/suction parameter. In addition, the fluid temperature boosted up when rising the Biot number and the solutal boundary layer thickness reduces both heterogeneous and homogeneous chemical reaction parameters.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

194-206

Citation:

Online since:

September 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.B. Ashraf, T. Hayat, A. Alsaedi, S.A. Shehzad, Soret and Dufour effects on the mixed convection flow of an Oldroyd-B fluid with convective boundary conditions. Results Phys. 6 (2016), 917-924.

DOI: 10.1016/j.rinp.2016.11.009

Google Scholar

[2] K.R. Rajagopal, R.K. Bhatnagar, Exact solutions for some simple flows of an Oldroyd-B fluid. Acta Mech. 113(1) (1995), 233-239.

DOI: 10.1007/bf01212645

Google Scholar

[3] M. Sajid, Z. Abbas, T. Javed, N. Ali, Boundary layer flow of an Oldroyd-B fluid in the region of stagnation point over a stretching sheet. Can. J. Phys. 88 (2010), 635-640.

DOI: 10.1139/p10-049

Google Scholar

[4] M. Jamil, N.A. Khan, A.A. Zafar, Translational flows of an Oldroyd-B fluid with fractional derivatives. Comput. Math. Appli. 62 (2011), 1540-1553.

DOI: 10.1016/j.camwa.2011.03.090

Google Scholar

[5] M. Ramzan, M. Farooq, M.S. Alhothuali, H.M. Malaikah, W. Cui, T. Hayat, Three dimensional flow of an Oldroyd-B fluid with Newtonian heating. Int. J. Numer. Methods Heat Fluid Flow. 25 (2015), 68-85.

DOI: 10.1108/hff-03-2014-0070

Google Scholar

[6] S. Eswaramoorthi, M. Bhuvaneswari, S. Sivasankaran, S. Rajan, Effect of radiation on MHD convective flow and heat transfer of a viscoelastic fluid over a stretching surface. Procedia Eng. 127 (2015), 916-923.

DOI: 10.1016/j.proeng.2015.11.364

Google Scholar

[7] T. Hayat, K. Hutter, S. Asghar, A.M. Siddiqui, MHD flows of an Oldroyd-B fluid. Math. Comput. Model. 36 (2002), 987-995.

DOI: 10.1016/s0895-7177(02)00252-2

Google Scholar

[8] O.D. Makinde, MHD mixed-convection interaction with thermal radiation and nth order chemical reaction past a vertical porous plate embedded in a porous medium. Chem. Eng. Commun. 198(4) (2011), 590-608.

DOI: 10.1080/00986445.2010.500151

Google Scholar

[9] P.O. Olanrewaju, O.D. Makinde, Effects of thermal diffusion and diffusion thermo on chemically reacting MHD boundary layer flow of heat and mass transfer past a moving vertical plate with suction/injection. Arab. J. Sci. Eng. 36 (2011), 1607-1619.

DOI: 10.1007/s13369-011-0143-8

Google Scholar

[10] O.D. Makinde, Heat and mass transfer by MHD mixed convection stagnation point flow toward a vertical plate embedded in a highly porous medium with radiation and internal heat generation. Meccanica. 47 (2012), 173-184.

DOI: 10.1007/s11012-011-9502-5

Google Scholar

[11] A.M. Olanrewaju, O.D. Makinde, On boundary layer stagnation point flow of a nanofluid over a permeable flat surface with Newtonian heating. Chem. Eng. Commun. 200(6) (2013), 836-852.

DOI: 10.1080/00986445.2012.721825

Google Scholar

[12] F. Mebarek-Oudina, R. Bessaih, Numerical modeling of MHD stability in a cylindrical configuration, J. Franklin. Inst. 351(2) (2014), 667-681.

DOI: 10.1016/j.jfranklin.2012.11.004

Google Scholar

[13] F. Mabood, W.A. Khan, Ismail AIM. MHD boundary layer flow and heat transfer of nanofluids over a nonlinear stretching sheet: A numerical study. J. Magn. Magn. Mater. 374 (2015), 569-576.

DOI: 10.1016/j.jmmm.2014.09.013

Google Scholar

[14] F. Mebarek-Oudina, R. Bessaih, Oscillatory magnetohydrodynamic natural convection of liquid metal between vertical coaxial cylinders, J. Appl . Fluid Mech. 9(4) (2016), 1655-1665.

DOI: 10.18869/acadpub.jafm.68.235.24813

Google Scholar

[15] M.H.M. Yasin, A. Ishak, I. Pop, MHD heat and mass transfer flow over a permeable stretching/shrinking sheet with radiation effect. J. Magn. Magn. Mater. 407 (2016), 235-240.

DOI: 10.1016/j.jmmm.2016.01.087

Google Scholar

[16] S. Karthikeyan, M. Bhuvaneswari, S. Sivasankaran, S. Rajan, Soret and Dufour effects on MHD mixed convection heat and mass transfer of a stagnation point flow towards a vertical plate in a porous medium with chemical reaction, radiation and heat generation. J. Appl. Fluid Mech. 9(3) (2016).

DOI: 10.18869/acadpub.jafm.68.228.24135

Google Scholar

[17] T. Salahuddin, M.Y. Malik, A. Hussain, S. Bilal, M. Awais, MHD flow of Cattanneo-Christov heat flux model for Williamson fluid over a stretching sheet with variable thickness: Using numerical approach. J. Magn. Magn. Mater. 401 (2016), 991-997.

DOI: 10.1016/j.jmmm.2015.11.022

Google Scholar

[18] F. Mebarek-Oudina, Numerical modeling of the hydrodynamic stability in vertical annulus with heat source of different lengths, Engin. Sci. Tech. Int. J. 20(4) (2017), 1324-1333.

DOI: 10.1016/j.jestch.2017.08.003

Google Scholar

[19] H. Niranjan, S. Sivasankaran, M. Bhuvaneswari, Chemical reaction, Soret and Dufour effects on MHD mixed convection stagnation point flow with radiation and slip condition. Scientia Iranica Trans. B. Mech. Eng. 24(2) (2017), 698-706.

DOI: 10.24200/sci.2017.4054

Google Scholar

[20] J.B.J. Fourier, Theorie. Analytique. De. La. Chaleur. Chez Firmin Didot. Paris. 1822.

Google Scholar

[21] C. Cattaneo, Sulla conduzione del calore. Atti. Semin. Mat. Fis. Univ. Modena. Reggio. Emilia. 3 (1948), 83-101.

Google Scholar

[22] C.I. Christov, On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction. Mech. Res. Commun. 36 (2009), 481-486.

DOI: 10.1016/j.mechrescom.2008.11.003

Google Scholar

[23] V. Tibullo, V. Zampoli, A uniqueness result for the Cattaneo-Christov heat conduction model applied to incompressible fluids. Mech. Res. Commun. 38 (2011), 77-79.

DOI: 10.1016/j.mechrescom.2010.10.008

Google Scholar

[24] B. Straughan, Thermal convection with the Cattaneo-Christov model. Int. J. Heat Mass Transf. 53 (2010), 95-98.

DOI: 10.1016/j.ijheatmasstransfer.2009.10.001

Google Scholar

[25] M. Ciarletta, B. Straughan, Uniqueness and structural stability for the Cattaneo-Christov equations. Mech. Res. Commun. 37 (2010), 445-447.

DOI: 10.1016/j.mechrescom.2010.06.002

Google Scholar

[26] F.M. Abbasi, M. Mustafa, S.A. Shehzad, M.S. Alhuthali, T. Hayat, Analytical study of CattaneoChristov heat flux model for a boundary layer flow of Oldroyd-B fluid. Chin. Phys. B. 25(1) (2016), 014701-1-6.

DOI: 10.1088/1674-1056/25/1/014701

Google Scholar

[27] S. Eswaramoorthi, M. Bhuvaneswari, S. Sivasankaran, H. Niranjan, S. Rajan, Effect of partial slip and chemical reaction on convection of a viscoelastic fluid over a stretching surface with Cattaneo-Christov heat flux model. IOP Conf. Ser. Mater. Sci. Eng. 263 (2017).

DOI: 10.1088/1757-899x/263/6/062009

Google Scholar

[28] O.D. Makinde, N. Sandeep, I.L. Animasaun, M.S. Tshehla, Numerical exploration of CattaneoChristov heat flux and mass transfer in magnetohydrodynamic flow over various geometries. Def. Diff. Forum. 374 (2017), 67-82.

DOI: 10.4028/www.scientific.net/ddf.374.67

Google Scholar

[29] S. Shaw, P.K. Kameswaran, P. Sibanda, Homogeneous-heterogeneous reactions in micropolar fluid flow from a permeable stretching or shrinking sheet in a porous medium. Bound. Value Prob. 77 (2013), 1-10.

DOI: 10.1186/1687-2770-2013-77

Google Scholar

[30] P.K. Kameswaran, S. Shaw, P. Sibanda, P.V.S.N. Murthy, Homogeneous-heterogeneous reactions in a nanofluid flow due to porous stretching sheet. Int. J. Heat Mass Transf. 57 (2013), 465-472.

DOI: 10.1016/j.ijheatmasstransfer.2012.10.047

Google Scholar

[31] W.A. Khan, I. Pop, Effects of homogeneous-heterogeneous reactions on the viscoelastic fluid towards a stretching sheet. ASME J. Heat Transf. 134 (2012), 064506 1-5.

DOI: 10.1115/1.4006016

Google Scholar

[32] T. Hayat, M. Imtiaz, A. Alsaedi, S. Almezal, On Cattaneo-Christov heat flux in MHD flow of Oldroyd-B fluid with homogeneous-heterogeneous reactions. J. Magn. Magn. Mater. 401 (2016),296-303.

DOI: 10.1016/j.jmmm.2015.10.039

Google Scholar

[33] S. Eswaramoorthi, M. Bhuvaneswari, S. Sivasankaran, S. Rajan, Soret and Dufour effects on viscoelastic boundary layer flow, heat and mass transfer in a stretching surface with convective boundary condition in the presence of radiation and chemical reaction. Scientia Iranica Trans. B. Mech. Eng. 23(6) (2016).

DOI: 10.24200/sci.2016.3967

Google Scholar