[1]
M.B. Ashraf, T. Hayat, A. Alsaedi, S.A. Shehzad, Soret and Dufour effects on the mixed convection flow of an Oldroyd-B fluid with convective boundary conditions. Results Phys. 6 (2016), 917-924.
DOI: 10.1016/j.rinp.2016.11.009
Google Scholar
[2]
K.R. Rajagopal, R.K. Bhatnagar, Exact solutions for some simple flows of an Oldroyd-B fluid. Acta Mech. 113(1) (1995), 233-239.
DOI: 10.1007/bf01212645
Google Scholar
[3]
M. Sajid, Z. Abbas, T. Javed, N. Ali, Boundary layer flow of an Oldroyd-B fluid in the region of stagnation point over a stretching sheet. Can. J. Phys. 88 (2010), 635-640.
DOI: 10.1139/p10-049
Google Scholar
[4]
M. Jamil, N.A. Khan, A.A. Zafar, Translational flows of an Oldroyd-B fluid with fractional derivatives. Comput. Math. Appli. 62 (2011), 1540-1553.
DOI: 10.1016/j.camwa.2011.03.090
Google Scholar
[5]
M. Ramzan, M. Farooq, M.S. Alhothuali, H.M. Malaikah, W. Cui, T. Hayat, Three dimensional flow of an Oldroyd-B fluid with Newtonian heating. Int. J. Numer. Methods Heat Fluid Flow. 25 (2015), 68-85.
DOI: 10.1108/hff-03-2014-0070
Google Scholar
[6]
S. Eswaramoorthi, M. Bhuvaneswari, S. Sivasankaran, S. Rajan, Effect of radiation on MHD convective flow and heat transfer of a viscoelastic fluid over a stretching surface. Procedia Eng. 127 (2015), 916-923.
DOI: 10.1016/j.proeng.2015.11.364
Google Scholar
[7]
T. Hayat, K. Hutter, S. Asghar, A.M. Siddiqui, MHD flows of an Oldroyd-B fluid. Math. Comput. Model. 36 (2002), 987-995.
DOI: 10.1016/s0895-7177(02)00252-2
Google Scholar
[8]
O.D. Makinde, MHD mixed-convection interaction with thermal radiation and nth order chemical reaction past a vertical porous plate embedded in a porous medium. Chem. Eng. Commun. 198(4) (2011), 590-608.
DOI: 10.1080/00986445.2010.500151
Google Scholar
[9]
P.O. Olanrewaju, O.D. Makinde, Effects of thermal diffusion and diffusion thermo on chemically reacting MHD boundary layer flow of heat and mass transfer past a moving vertical plate with suction/injection. Arab. J. Sci. Eng. 36 (2011), 1607-1619.
DOI: 10.1007/s13369-011-0143-8
Google Scholar
[10]
O.D. Makinde, Heat and mass transfer by MHD mixed convection stagnation point flow toward a vertical plate embedded in a highly porous medium with radiation and internal heat generation. Meccanica. 47 (2012), 173-184.
DOI: 10.1007/s11012-011-9502-5
Google Scholar
[11]
A.M. Olanrewaju, O.D. Makinde, On boundary layer stagnation point flow of a nanofluid over a permeable flat surface with Newtonian heating. Chem. Eng. Commun. 200(6) (2013), 836-852.
DOI: 10.1080/00986445.2012.721825
Google Scholar
[12]
F. Mebarek-Oudina, R. Bessaih, Numerical modeling of MHD stability in a cylindrical configuration, J. Franklin. Inst. 351(2) (2014), 667-681.
DOI: 10.1016/j.jfranklin.2012.11.004
Google Scholar
[13]
F. Mabood, W.A. Khan, Ismail AIM. MHD boundary layer flow and heat transfer of nanofluids over a nonlinear stretching sheet: A numerical study. J. Magn. Magn. Mater. 374 (2015), 569-576.
DOI: 10.1016/j.jmmm.2014.09.013
Google Scholar
[14]
F. Mebarek-Oudina, R. Bessaih, Oscillatory magnetohydrodynamic natural convection of liquid metal between vertical coaxial cylinders, J. Appl . Fluid Mech. 9(4) (2016), 1655-1665.
DOI: 10.18869/acadpub.jafm.68.235.24813
Google Scholar
[15]
M.H.M. Yasin, A. Ishak, I. Pop, MHD heat and mass transfer flow over a permeable stretching/shrinking sheet with radiation effect. J. Magn. Magn. Mater. 407 (2016), 235-240.
DOI: 10.1016/j.jmmm.2016.01.087
Google Scholar
[16]
S. Karthikeyan, M. Bhuvaneswari, S. Sivasankaran, S. Rajan, Soret and Dufour effects on MHD mixed convection heat and mass transfer of a stagnation point flow towards a vertical plate in a porous medium with chemical reaction, radiation and heat generation. J. Appl. Fluid Mech. 9(3) (2016).
DOI: 10.18869/acadpub.jafm.68.228.24135
Google Scholar
[17]
T. Salahuddin, M.Y. Malik, A. Hussain, S. Bilal, M. Awais, MHD flow of Cattanneo-Christov heat flux model for Williamson fluid over a stretching sheet with variable thickness: Using numerical approach. J. Magn. Magn. Mater. 401 (2016), 991-997.
DOI: 10.1016/j.jmmm.2015.11.022
Google Scholar
[18]
F. Mebarek-Oudina, Numerical modeling of the hydrodynamic stability in vertical annulus with heat source of different lengths, Engin. Sci. Tech. Int. J. 20(4) (2017), 1324-1333.
DOI: 10.1016/j.jestch.2017.08.003
Google Scholar
[19]
H. Niranjan, S. Sivasankaran, M. Bhuvaneswari, Chemical reaction, Soret and Dufour effects on MHD mixed convection stagnation point flow with radiation and slip condition. Scientia Iranica Trans. B. Mech. Eng. 24(2) (2017), 698-706.
DOI: 10.24200/sci.2017.4054
Google Scholar
[20]
J.B.J. Fourier, Theorie. Analytique. De. La. Chaleur. Chez Firmin Didot. Paris. 1822.
Google Scholar
[21]
C. Cattaneo, Sulla conduzione del calore. Atti. Semin. Mat. Fis. Univ. Modena. Reggio. Emilia. 3 (1948), 83-101.
Google Scholar
[22]
C.I. Christov, On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction. Mech. Res. Commun. 36 (2009), 481-486.
DOI: 10.1016/j.mechrescom.2008.11.003
Google Scholar
[23]
V. Tibullo, V. Zampoli, A uniqueness result for the Cattaneo-Christov heat conduction model applied to incompressible fluids. Mech. Res. Commun. 38 (2011), 77-79.
DOI: 10.1016/j.mechrescom.2010.10.008
Google Scholar
[24]
B. Straughan, Thermal convection with the Cattaneo-Christov model. Int. J. Heat Mass Transf. 53 (2010), 95-98.
DOI: 10.1016/j.ijheatmasstransfer.2009.10.001
Google Scholar
[25]
M. Ciarletta, B. Straughan, Uniqueness and structural stability for the Cattaneo-Christov equations. Mech. Res. Commun. 37 (2010), 445-447.
DOI: 10.1016/j.mechrescom.2010.06.002
Google Scholar
[26]
F.M. Abbasi, M. Mustafa, S.A. Shehzad, M.S. Alhuthali, T. Hayat, Analytical study of CattaneoChristov heat flux model for a boundary layer flow of Oldroyd-B fluid. Chin. Phys. B. 25(1) (2016), 014701-1-6.
DOI: 10.1088/1674-1056/25/1/014701
Google Scholar
[27]
S. Eswaramoorthi, M. Bhuvaneswari, S. Sivasankaran, H. Niranjan, S. Rajan, Effect of partial slip and chemical reaction on convection of a viscoelastic fluid over a stretching surface with Cattaneo-Christov heat flux model. IOP Conf. Ser. Mater. Sci. Eng. 263 (2017).
DOI: 10.1088/1757-899x/263/6/062009
Google Scholar
[28]
O.D. Makinde, N. Sandeep, I.L. Animasaun, M.S. Tshehla, Numerical exploration of CattaneoChristov heat flux and mass transfer in magnetohydrodynamic flow over various geometries. Def. Diff. Forum. 374 (2017), 67-82.
DOI: 10.4028/www.scientific.net/ddf.374.67
Google Scholar
[29]
S. Shaw, P.K. Kameswaran, P. Sibanda, Homogeneous-heterogeneous reactions in micropolar fluid flow from a permeable stretching or shrinking sheet in a porous medium. Bound. Value Prob. 77 (2013), 1-10.
DOI: 10.1186/1687-2770-2013-77
Google Scholar
[30]
P.K. Kameswaran, S. Shaw, P. Sibanda, P.V.S.N. Murthy, Homogeneous-heterogeneous reactions in a nanofluid flow due to porous stretching sheet. Int. J. Heat Mass Transf. 57 (2013), 465-472.
DOI: 10.1016/j.ijheatmasstransfer.2012.10.047
Google Scholar
[31]
W.A. Khan, I. Pop, Effects of homogeneous-heterogeneous reactions on the viscoelastic fluid towards a stretching sheet. ASME J. Heat Transf. 134 (2012), 064506 1-5.
DOI: 10.1115/1.4006016
Google Scholar
[32]
T. Hayat, M. Imtiaz, A. Alsaedi, S. Almezal, On Cattaneo-Christov heat flux in MHD flow of Oldroyd-B fluid with homogeneous-heterogeneous reactions. J. Magn. Magn. Mater. 401 (2016),296-303.
DOI: 10.1016/j.jmmm.2015.10.039
Google Scholar
[33]
S. Eswaramoorthi, M. Bhuvaneswari, S. Sivasankaran, S. Rajan, Soret and Dufour effects on viscoelastic boundary layer flow, heat and mass transfer in a stretching surface with convective boundary condition in the presence of radiation and chemical reaction. Scientia Iranica Trans. B. Mech. Eng. 23(6) (2016).
DOI: 10.24200/sci.2016.3967
Google Scholar