Flow and Heat Transfer in Nanofluid Flow through a Cylinder Filled with Foam Porous Medium under Radial Injection

Article Preview

Abstract:

The Darcy flow and heat convection in nanofluid through a cylinder filled with a foam porous medium subject to local non-thermal equilibrium (LNTE) condition and uniform radial injection on the outer wall of the cylinder is studied. The momentum and two-energy equations are solved by differential transformation method (DTM) in the form of stream function using similarity variables. The effect on flow and heat transfer of different types of nanofluids and involved physical parameters Prandtl number Pr, Reylond number Re, Darcy number Da, Biot number Bi, Ratio of thermal conductivities Rk, porosity parameter ε, solid volume fraction parameter φ and shape of nanoparticles are analyzed through graphs. The viscous drag force and heat convection at the wall of the cylinder is calculated in terms of non-dimensional skin-friction coefficient and Nusselt number respectively. Decreasing the porosity of foam porous medium causes increment in magnitude of heat transfer rate for both the phases. Spherical shape of nanoparticles transfers more heat in comparison of cylindrical shape nanoparticles. Amongst the nanofluid H2O-Ag, H2O-Cu and H2O-Al2O3 the magnitude of heat transfer for fluid phase Nuf is lowest for nanofluid H2O-Al2O3.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

166-181

Citation:

Online since:

September 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Darcy, Les Fontaines Publiques de la Ville de Dijon, Victor Dalmont, Paris (1856).

Google Scholar

[2] N. Dukhan, A. Muntadher, A. Rammahi, A. S. Suleiman, Thermal convection measurements inside aluminium foam and comparison to existing analytical solutions. Procedia Materials Science, 4 (2014) 341 – 346.

DOI: 10.1016/j.mspro.2014.07.569

Google Scholar

[3] G. K. Konstantin, V. N. Alexander, N. Aleksey, Foam in porous media: thermodynamic and hydrodynamic peculiarities, Advances in Colloid and Interface Science 82 (1999) 127-187.

DOI: 10.1016/s0001-8686(99)00013-5

Google Scholar

[4] F. M. Oudina, R. Bessaih, Numerical modeling of MHD stability in a cylindrical configuration, Journal of Franklin Institute, 351(2) (2014) 667-681.

DOI: 10.1016/j.jfranklin.2012.11.004

Google Scholar

[5] F. M. Oudina, R. Bessaih, Oscillatory MHD natural convection of liquid metal between vertical coaxial cylinders, Journal of Applied Fluid Mechanics 9(4) (2016) 1655-65.

DOI: 10.18869/acadpub.jafm.68.235.24813

Google Scholar

[6] F. M. Oudina, R. Bessaih, Oscillatory mixed convection flow in cylindrical container with rotating disc under axial magnetic field and various electric conductivity walls, International review of physics 4(1) (2010) 45-51.

Google Scholar

[7] M. G. Reddy, O. D. Makinde, Magnetohydrodynamic peristaltic transport of Jeffrey nanofluid in an asymmetric channel, Journal of Molecular Liquids, 223 (2016) 1242-1248.

DOI: 10.1016/j.molliq.2016.09.080

Google Scholar

[8] G.K. Ramesh, K. Ganesh Kumar, S.A. Shehzad, B.J. Gireesha (2018) Enhancement of radiation on hydromagnetic Casson fluid flow towards a stretched cylinder with suspension of liquid-particles , Canadian Journal of Physics,  96 (1) (2018) 18-24.

DOI: 10.1139/cjp-2017-0307

Google Scholar

[9] P. X. Jiang, Z. P. Ren, Numerical investigation of forced convection heat transfer in porous media using a thermal non-equilibrium model, Int. J. Heat fluid flow Vol. 22(1), (2001) 102-110.

DOI: 10.1016/s0142-727x(00)00066-7

Google Scholar

[10] S. A. Khashan, A. M. Al-Amiri, I. Pop, Numerical simulation of natural convection heat transfer in a porous cavity heated from below using a non-Darcian and thermal non-equilibrium model, Int. J. Heat Mass Transfer, 49(5-6) (2006) 1039-1049.

DOI: 10.1016/j.ijheatmasstransfer.2005.09.011

Google Scholar

[11] A. M. Hayes, The thermal modeling of a matrix heat exchanger using porous media and the thermal non-equilibrium, University of South Carolina (2006).

Google Scholar

[12] K. Boomsma, D. Poulikakos, On the effective thermal conductivity of a three-dimensionally structured fluid-saturated metal foam, International Journal of Heat and Mass Transfer, 44 (2001) 827-836.

DOI: 10.1016/s0017-9310(00)00123-x

Google Scholar

[13] A. Bhattacharya, V.V. Calmidi, R. L. Mahajan, Thermophysical properties of high porosity metal foams, International Journal of Heat and Mass Transfer, Vol. 45, (2002) 1017-1031.

DOI: 10.1016/s0017-9310(01)00220-4

Google Scholar

[14] R. Singh, H. S. Kasana, Computational aspects of effective thermal conductivity of highly porous metal foams, Applied Thermal Engineering, 24 (2004) 1841-1849.

DOI: 10.1016/j.applthermaleng.2003.12.011

Google Scholar

[15] C. Yang, A. Nakayama, A synthesis of tortuosity and dispersion in effective thermal conductivity of porous media, International Journal of Heat and Mass Transfer, 53 (2010) 3222-3230.

DOI: 10.1016/j.ijheatmasstransfer.2010.03.004

Google Scholar

[16] F. Kuwahara, C. Yang, K. Ando, A. Nakayama, Exact solutions for a thermal non equilibrium model of fluid saturated porous media based on an effective porosity, ASME Journal of Heat Transfer, 133 (2011) 1126021-112602-9.

DOI: 10.1115/1.4004354

Google Scholar

[17] V. V. Calmidi, R. L. Mahajan, Forced convection in high porosity metal foams. Journal of Heat Transfer, 122(3) (2000) 557-565.

DOI: 10.1115/1.1287793

Google Scholar

[18] S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, In: D.A. Springer and H.P. Wang (Eds), Developments and Applications of non-Newtonian flows, ASME FED, 231/MD66, (1995) 99-105.

Google Scholar

[19] S. C. Tzen, C. W. Lin, K. D. Huang, Heat transfer enhancement of nanofluids in rotary blade coupling of four wheel drive vehicles, Acta Mechanica, 179(1-2), (2005) 11–23.

DOI: 10.1007/s00707-005-0248-9

Google Scholar

[20] S. J. Kim, I. C. Bang, J. Buongiorno, L. W. Hu, Study of pool boiling and critical heat flux enhancement in nanofluids, Bulletin of the Polish Academy of Sciences-Technical Sciences, 55(2) (2007) 211-216.

Google Scholar

[21] J. Routbort, J. Argonne, National Lab, Michellin North America, St. Gobain Corp.(2009).

Google Scholar

[22] G. Donzelli, R. Cerbino, A. Vailati, Bi-stable heat transfer in a nanofluid, Physical Review Letters 102(10) (2009) 104-503.

DOI: 10.1103/physrevlett.102.104503

Google Scholar

[23] A. V. Kuznetsov, D. A. Nield, Effect of local thermal non-equilibrium on the onset of convection in a porous medium layer saturated by a nanofluid. Transport Porous Medium, 83 (2010) 425–436.

DOI: 10.1007/s11242-009-9452-8

Google Scholar

[24] F. Sakai, W. Li, A. Nakayama, A rigorous derivation and its applications of volume averaged transport equations for heat transfer in nanofluid saturated metal foam, Proceedings of the International Heat Transfer Conference, Kyoto, Japan, pp.10-15, (2014).

DOI: 10.1615/ihtc15.pmd.008575

Google Scholar

[25] W. Zhang, W. Li, C. Yang, A. Nakayama, A volume averaging theory for convective flow in a nanofluid saturated metal foam, Journal of Fluid Mechanics, 769 (2015) 590-620.

DOI: 10.3390/fluids1010008

Google Scholar

[26] B. Aladag, S. Halelfadl, N. Doner, T. Maré, S. Duret, P. Estelle, Experimental investigations of the viscosity of nanofluids at low temperatures. Appl. Energy , 97 (2012) 876–880.

DOI: 10.1016/j.apenergy.2011.12.101

Google Scholar

[27] M. Corcione, (2011); Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers. Manag, 52 (2011) 789–793.

DOI: 10.1016/j.enconman.2010.06.072

Google Scholar

[28] S. Khamis, O. D. Makinde, Y. Nkansah-Gyekye, Unsteady flow of variable viscosity Cu-water and Al2O3-water nanofluids in a porous pipe with buoyancy force, International Journal of Numerical Methods for Heat & Fluid Flow 25(7) (2015) 1638-1657.

DOI: 10.1108/hff-09-2014-0286

Google Scholar

[29] O. D. Makinde, F. Mabood, W. A. Khan, M. S. Tshehla, MHD flow of a variable viscosity nanofluid over a radially stretching convective surface with radiative heat, Journal of Molecular Liquids 219 (2016) 624-630.

DOI: 10.1016/j.molliq.2016.03.078

Google Scholar

[30] K. U. Rehman, M. Y. Malik, O. D. Makinde, A. A. Malik, A comparative study of nanofluids flow yields by an inclined cylindrical surface in a double stratified medium, The European Physical Journal Plus, 132 (10) (2017) 427.

DOI: 10.1140/epjp/i2017-11679-1

Google Scholar

[31] H. F. Oztop, E. A. Nada, Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids, Int. J. Heat Fluid Flow, 29(1) (2008) 1326–1336.

DOI: 10.1016/j.ijheatfluidflow.2008.04.009

Google Scholar

[32] A. S. Berman, Laminar flow in channels with porous walls, Journal of Applied Physics, 24 (1953)1232–1235.

DOI: 10.1063/1.1721476

Google Scholar

[33] J. K. Zhou, Differential transformation and its applications for electrical circuits. Huazhong University Press, Wuhan, China (1986).

Google Scholar

[34] Z. G. Qu, H. J. Xu, T. S. Wang, W. Q. Tao, T. J. Lu, Thermal transport in metallic porous media. Heat Transfer - Engineering Applications, (2011) 171-205.

DOI: 10.5772/27018

Google Scholar

[35] A. Abdedou, K. Bouhadef, Comparison between two local thermal non equilibrium criteria in forced convection through a porous channel. Journal of Applied Fluid Mechanics, 8(3) (2015) 491- 498.

DOI: 10.18869/acadpub.jafm.67.222.22233

Google Scholar

[36] Bhattacharya R. L. Mahajan, Metal foam and finned metal foam heat sinks for electronics cooling in buoyancy-induced convection. J. Electron Packaging,128 (2006) 259-266.

DOI: 10.1115/1.2229225

Google Scholar