[1]
H. Darcy, Les Fontaines Publiques de la Ville de Dijon, Victor Dalmont, Paris (1856).
Google Scholar
[2]
N. Dukhan, A. Muntadher, A. Rammahi, A. S. Suleiman, Thermal convection measurements inside aluminium foam and comparison to existing analytical solutions. Procedia Materials Science, 4 (2014) 341 – 346.
DOI: 10.1016/j.mspro.2014.07.569
Google Scholar
[3]
G. K. Konstantin, V. N. Alexander, N. Aleksey, Foam in porous media: thermodynamic and hydrodynamic peculiarities, Advances in Colloid and Interface Science 82 (1999) 127-187.
DOI: 10.1016/s0001-8686(99)00013-5
Google Scholar
[4]
F. M. Oudina, R. Bessaih, Numerical modeling of MHD stability in a cylindrical configuration, Journal of Franklin Institute, 351(2) (2014) 667-681.
DOI: 10.1016/j.jfranklin.2012.11.004
Google Scholar
[5]
F. M. Oudina, R. Bessaih, Oscillatory MHD natural convection of liquid metal between vertical coaxial cylinders, Journal of Applied Fluid Mechanics 9(4) (2016) 1655-65.
DOI: 10.18869/acadpub.jafm.68.235.24813
Google Scholar
[6]
F. M. Oudina, R. Bessaih, Oscillatory mixed convection flow in cylindrical container with rotating disc under axial magnetic field and various electric conductivity walls, International review of physics 4(1) (2010) 45-51.
Google Scholar
[7]
M. G. Reddy, O. D. Makinde, Magnetohydrodynamic peristaltic transport of Jeffrey nanofluid in an asymmetric channel, Journal of Molecular Liquids, 223 (2016) 1242-1248.
DOI: 10.1016/j.molliq.2016.09.080
Google Scholar
[8]
G.K. Ramesh, K. Ganesh Kumar, S.A. Shehzad, B.J. Gireesha (2018) Enhancement of radiation on hydromagnetic Casson fluid flow towards a stretched cylinder with suspension of liquid-particles , Canadian Journal of Physics, 96 (1) (2018) 18-24.
DOI: 10.1139/cjp-2017-0307
Google Scholar
[9]
P. X. Jiang, Z. P. Ren, Numerical investigation of forced convection heat transfer in porous media using a thermal non-equilibrium model, Int. J. Heat fluid flow Vol. 22(1), (2001) 102-110.
DOI: 10.1016/s0142-727x(00)00066-7
Google Scholar
[10]
S. A. Khashan, A. M. Al-Amiri, I. Pop, Numerical simulation of natural convection heat transfer in a porous cavity heated from below using a non-Darcian and thermal non-equilibrium model, Int. J. Heat Mass Transfer, 49(5-6) (2006) 1039-1049.
DOI: 10.1016/j.ijheatmasstransfer.2005.09.011
Google Scholar
[11]
A. M. Hayes, The thermal modeling of a matrix heat exchanger using porous media and the thermal non-equilibrium, University of South Carolina (2006).
Google Scholar
[12]
K. Boomsma, D. Poulikakos, On the effective thermal conductivity of a three-dimensionally structured fluid-saturated metal foam, International Journal of Heat and Mass Transfer, 44 (2001) 827-836.
DOI: 10.1016/s0017-9310(00)00123-x
Google Scholar
[13]
A. Bhattacharya, V.V. Calmidi, R. L. Mahajan, Thermophysical properties of high porosity metal foams, International Journal of Heat and Mass Transfer, Vol. 45, (2002) 1017-1031.
DOI: 10.1016/s0017-9310(01)00220-4
Google Scholar
[14]
R. Singh, H. S. Kasana, Computational aspects of effective thermal conductivity of highly porous metal foams, Applied Thermal Engineering, 24 (2004) 1841-1849.
DOI: 10.1016/j.applthermaleng.2003.12.011
Google Scholar
[15]
C. Yang, A. Nakayama, A synthesis of tortuosity and dispersion in effective thermal conductivity of porous media, International Journal of Heat and Mass Transfer, 53 (2010) 3222-3230.
DOI: 10.1016/j.ijheatmasstransfer.2010.03.004
Google Scholar
[16]
F. Kuwahara, C. Yang, K. Ando, A. Nakayama, Exact solutions for a thermal non equilibrium model of fluid saturated porous media based on an effective porosity, ASME Journal of Heat Transfer, 133 (2011) 1126021-112602-9.
DOI: 10.1115/1.4004354
Google Scholar
[17]
V. V. Calmidi, R. L. Mahajan, Forced convection in high porosity metal foams. Journal of Heat Transfer, 122(3) (2000) 557-565.
DOI: 10.1115/1.1287793
Google Scholar
[18]
S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, In: D.A. Springer and H.P. Wang (Eds), Developments and Applications of non-Newtonian flows, ASME FED, 231/MD66, (1995) 99-105.
Google Scholar
[19]
S. C. Tzen, C. W. Lin, K. D. Huang, Heat transfer enhancement of nanofluids in rotary blade coupling of four wheel drive vehicles, Acta Mechanica, 179(1-2), (2005) 11–23.
DOI: 10.1007/s00707-005-0248-9
Google Scholar
[20]
S. J. Kim, I. C. Bang, J. Buongiorno, L. W. Hu, Study of pool boiling and critical heat flux enhancement in nanofluids, Bulletin of the Polish Academy of Sciences-Technical Sciences, 55(2) (2007) 211-216.
Google Scholar
[21]
J. Routbort, J. Argonne, National Lab, Michellin North America, St. Gobain Corp.(2009).
Google Scholar
[22]
G. Donzelli, R. Cerbino, A. Vailati, Bi-stable heat transfer in a nanofluid, Physical Review Letters 102(10) (2009) 104-503.
DOI: 10.1103/physrevlett.102.104503
Google Scholar
[23]
A. V. Kuznetsov, D. A. Nield, Effect of local thermal non-equilibrium on the onset of convection in a porous medium layer saturated by a nanofluid. Transport Porous Medium, 83 (2010) 425–436.
DOI: 10.1007/s11242-009-9452-8
Google Scholar
[24]
F. Sakai, W. Li, A. Nakayama, A rigorous derivation and its applications of volume averaged transport equations for heat transfer in nanofluid saturated metal foam, Proceedings of the International Heat Transfer Conference, Kyoto, Japan, pp.10-15, (2014).
DOI: 10.1615/ihtc15.pmd.008575
Google Scholar
[25]
W. Zhang, W. Li, C. Yang, A. Nakayama, A volume averaging theory for convective flow in a nanofluid saturated metal foam, Journal of Fluid Mechanics, 769 (2015) 590-620.
DOI: 10.3390/fluids1010008
Google Scholar
[26]
B. Aladag, S. Halelfadl, N. Doner, T. Maré, S. Duret, P. Estelle, Experimental investigations of the viscosity of nanofluids at low temperatures. Appl. Energy , 97 (2012) 876–880.
DOI: 10.1016/j.apenergy.2011.12.101
Google Scholar
[27]
M. Corcione, (2011); Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers. Manag, 52 (2011) 789–793.
DOI: 10.1016/j.enconman.2010.06.072
Google Scholar
[28]
S. Khamis, O. D. Makinde, Y. Nkansah-Gyekye, Unsteady flow of variable viscosity Cu-water and Al2O3-water nanofluids in a porous pipe with buoyancy force, International Journal of Numerical Methods for Heat & Fluid Flow 25(7) (2015) 1638-1657.
DOI: 10.1108/hff-09-2014-0286
Google Scholar
[29]
O. D. Makinde, F. Mabood, W. A. Khan, M. S. Tshehla, MHD flow of a variable viscosity nanofluid over a radially stretching convective surface with radiative heat, Journal of Molecular Liquids 219 (2016) 624-630.
DOI: 10.1016/j.molliq.2016.03.078
Google Scholar
[30]
K. U. Rehman, M. Y. Malik, O. D. Makinde, A. A. Malik, A comparative study of nanofluids flow yields by an inclined cylindrical surface in a double stratified medium, The European Physical Journal Plus, 132 (10) (2017) 427.
DOI: 10.1140/epjp/i2017-11679-1
Google Scholar
[31]
H. F. Oztop, E. A. Nada, Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids, Int. J. Heat Fluid Flow, 29(1) (2008) 1326–1336.
DOI: 10.1016/j.ijheatfluidflow.2008.04.009
Google Scholar
[32]
A. S. Berman, Laminar flow in channels with porous walls, Journal of Applied Physics, 24 (1953)1232–1235.
DOI: 10.1063/1.1721476
Google Scholar
[33]
J. K. Zhou, Differential transformation and its applications for electrical circuits. Huazhong University Press, Wuhan, China (1986).
Google Scholar
[34]
Z. G. Qu, H. J. Xu, T. S. Wang, W. Q. Tao, T. J. Lu, Thermal transport in metallic porous media. Heat Transfer - Engineering Applications, (2011) 171-205.
DOI: 10.5772/27018
Google Scholar
[35]
A. Abdedou, K. Bouhadef, Comparison between two local thermal non equilibrium criteria in forced convection through a porous channel. Journal of Applied Fluid Mechanics, 8(3) (2015) 491- 498.
DOI: 10.18869/acadpub.jafm.67.222.22233
Google Scholar
[36]
Bhattacharya R. L. Mahajan, Metal foam and finned metal foam heat sinks for electronics cooling in buoyancy-induced convection. J. Electron Packaging,128 (2006) 259-266.
DOI: 10.1115/1.2229225
Google Scholar