Heat Transfer in Variable Viscosity Micro-Channel Flow of EG-Water/Ag Nanofluids with Convective Cooling

Article Preview

Abstract:

Thermal decomposition of a variable viscosity nanofluid containing ethylene glycol (EG)-water mixture with silver (Ag) nanoparticles in a micro-channel with convective heat exchange at the walls is investigated. The model equations for momentum and energy balance are obtained and transformed into a nonlinear boundary value problem using lubrication approximation theory and tackled semi-analytically via perturbation method coupled with Hermite-Padé approximation techniques. EG to water volume ratios examined are 0:100%, 20:80%, 40:60%, 60:40%, 80:20% and 100:0% while the Ag nanoparticles volume fraction utilised are 0%, 5% and 10%. It is found that the critical Eckert number for nanofluid thermal stability and the Nusselt number are enhanced with an increase in the nanoparticles volume fraction while an increase of EG volume ratio in the base fluid lessens the critical Eckert number.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

182-193

Citation:

Online since:

September 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. T. Obot, Toward a better understanding of friction and heat/mass transfer in microchannel – A literatures review, Microscale Thermophysical Engineering, 6 (2002) 155-173.

DOI: 10.1080/10893950290053295

Google Scholar

[2] T. M. Harms, M. J. Kazmierczak, F. M. Gerner, Developing convective heat transfer in deep rectangular microchannels, International Journal of Heat Fluid Flow, 20(1999) 149–157.

DOI: 10.1016/s0142-727x(98)10055-3

Google Scholar

[3] G. L. Morini, M. Spiga, The role of the viscous dissipation in heated microchannels, ASME J. Heat Trans., 129 (2007) 308–318.

DOI: 10.1115/1.2430725

Google Scholar

[4] G. Hetsroni, A. Mosyak, Z. Segal, Non uniform temperature distribution in electronic devices cooled by flow in parallel microchannels, IEEE Transactions on components and packaging technologies, 24(2001)17-23.

DOI: 10.1109/6144.910797

Google Scholar

[5] G.L. Morini, Single-phase convective heat transfer in microchannels: a review of experimental results, International Journal of Thermal Science, 43 (2004) 631-651.

DOI: 10.1016/j.ijthermalsci.2004.01.003

Google Scholar

[6] P.K. Namburu, D.P. Kulkarni, A. Dandekar, D.K. Das, Experimental investigation of viscosity and specific heat of silicon dioxide nanofluids, Micro NanoLett. 2 (3) (2007) 67-71.

DOI: 10.1049/mnl:20070037

Google Scholar

[7] C.T. Nguyen, F. Desgranges, G. Roy, N. Galanis, T. Mare, S. Boucher, H. Angue Minsta, Temperature and particle-size dependent viscosity data for water based nanofluids – hystresis phenomenon. Int. J. Heat Fluid Flow 28 (2007) 1492–1506.

DOI: 10.1016/j.ijheatfluidflow.2007.02.004

Google Scholar

[8] S. U. S Choi, Enhancing thermal conductivity of fluids with nanoparticles, In: Proc. 1995 ASME Int. Mech. Engng. Congress and Exposition, San Franciscos, USA, ASME, FED 231/MD 66 (1995) 99–105.

Google Scholar

[9] J. Buongiorno, Convective transport in nanofluids, ASME J. Heat Transf. 128 (2006)240-250.

Google Scholar

[10] O. D. Makinde, T. Iskander, F. Mabood, W.A. Khan, M. S. Tshehla, MHD Couette-Poiseuille flow of variable viscosity nanofluids in a rotating permeable channel with Hall effects, Journal of Molecular Liquids, 221 (2016) 778-787.

DOI: 10.1016/j.molliq.2016.06.037

Google Scholar

[11] O.D. Makinde, A.S. Eegunjobi, MHD couple stress nanofluid flow in a permeable wall channel with entropy generation and nonlinear radiative heat, Journal of Thermal Science and Technology, 12(2) 17-00252 (2017)JTST0033(1-16).

DOI: 10.1299/jtst.2017jtst0033

Google Scholar

[12] M.H. Mkwizu, O.D. Makinde, Entropy generation in a variable viscosity channel flow of nanofluids with convective cooling, Comptes Rendus Mécanique, 343 (2015) 38-56.

DOI: 10.1016/j.crme.2014.09.002

Google Scholar

[13] A.T. Olatundun, O.D. Makinde, Analysis of Blasius flow of hybrid nanofluids over a convectively heated surface. Defect and Diffusion Forum, 377 (2017) 29-41, (2017).

DOI: 10.4028/www.scientific.net/ddf.377.29

Google Scholar

[14] D. Cabaleiro, L. Colla, F. Agresti, L. Lugo, L. Fedele, Transport properties and heat transfer coefficients of ZnO/(ethylene glycol + water) nanofluids, Int. J. Heat Mass Transf. 89 (2015) 433–443.

DOI: 10.1016/j.ijheatmasstransfer.2015.05.067

Google Scholar

[15] S.Z. Heris, M. Shokrgozar, S. Poorpharhang, M. Shanbedi, S.H. Noie, Experimental study of heat transfer of a car radiator with CuO/ethylene glycol-water as a coolant, J. Dispers. Sci. Technol. 35 (2014) 677–684.

DOI: 10.1080/01932691.2013.805301

Google Scholar

[16] Z. Said, M.H. Sajid, M.A. Alim, R. Saidur, N.A. Rahim, Experimental investigation of the thermophysical properties of Al2O3-nanofluid and its effect on a flat plate solar collector, Int. Commun. Heat Mass 48 (2013) 99–107.

DOI: 10.1016/j.icheatmasstransfer.2013.09.005

Google Scholar

[17] O.D. Makinde, Hermite-Padé approximation approach to steady flow of a liquid film with adiabatic free surface along an inclined heat plate, Physica A, Vol. 381, (2007) 1-7.

DOI: 10.1016/j.physa.2007.03.001

Google Scholar

[18] C. Bender, and S. A. Orszag, Advanced mathematical methods for scientists and engineers, McGraw-Hill, (1978).

Google Scholar

[19] A. J. Guttamann, Asymptotic analysis of power –series expansions, Phase Transitions and Critical Phenomena, C. Domb and J. K. Lebowitz, eds. Academic Press, New York, (1989)1-234.

Google Scholar

[20] H. C. Brinkman, The viscosity of concentrated suspensions and solutions, J. Chem. Phys., 20(4), (1952) 571-571.

Google Scholar

[21] ASHRAE, Handbook Fundamentals - SI Edition, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta, USA, (2009).

Google Scholar