[1]
P.G. Saffman, On the stability of a laminar flow of a dusty gas, J. Fluid Mech. 13(1962)120–128.
DOI: 10.1017/s0022112062000555
Google Scholar
[2]
V.M. Agranat, Effect of pressure gradient on friction and heat transfer in a dusty boundary layer, Fluid Dynamics. 23(1988) 729-732.
DOI: 10.1007/bf02614150
Google Scholar
[3]
S.U. Mamatha, Mahesha, C.S.K. Raju, O.D. Makinde, Effect of convective boundary conditions on MHD Carreau dusty fluid over a stretching sheet with heat source. Defect and Diffusion Forum, 377 (2017) 233-241.
DOI: 10.4028/www.scientific.net/ddf.377.233
Google Scholar
[4]
R. Nandkeolyar, G. S. Seth, O. D. Makinde, P. Sibanda, M. S. Ansari, Unsteady hydromagnetic natural convection flow of a dusty fluid past an impulsively moving vertical plate with ramped temperature in the presence of thermal radiation. ASME-Journal of Applied Mechanics 80 (2013).
DOI: 10.1115/1.4023959
Google Scholar
[5]
K. Vajravelu, J. Nayfeh, Hydromagnetic flow of a dusty fluid over a stretching sheet, Int. J. Nonlin. Mech. 27(1992) 937–945.
DOI: 10.1016/0020-7462(92)90046-a
Google Scholar
[6]
B.J. Gireesha, G.K. Ramesh, M. S. Abel, C.S. Bagewadi, Boundary layer flow and heat transfer of a dusty fluid flow over a stretching sheet with non-uniform heat source/sink,Int. J. Multiphase Flow, 37 (8) (2011) 977-982.
DOI: 10.1016/j.ijmultiphaseflow.2011.03.014
Google Scholar
[7]
G.K. Ramesh, B.J. Gireesha, C.S. Bagewadi, MHD flow of a dusty fluid near the stagnation point over a permeable stretching sheet with non-uniform source/sink,Int. J. Heat and Mass Transfer, 55(2012) 4900–4907.
DOI: 10.1016/j.ijheatmasstransfer.2012.05.003
Google Scholar
[8]
G.K. Ramesh B.J. Gireesha,Flow over a stretching sheet in a dusty fluid with radiation effect, ASME J. Heat transfer, 135(10) (2013)102702(1-6).
DOI: 10.1115/1.4024587
Google Scholar
[9]
G.K. Ramesh, Ali J. Chamkha, B.J. Gireesha, MHD mixed convection viscoelastic fluid over an inclined surface with a non-uniform heat source/sink,Canadian Journal of Physics, 91(12) (2013) 1074-1080.
DOI: 10.1139/cjp-2013-0173
Google Scholar
[10]
G.K. Ramesh, B.J. Gireesha, C.S. Bagewadi, Stagnation point flow of a MHD dusty fluid towards a stretching sheet with radiation, AfrikaMatematika, 25(1) (2014) 237-249.
DOI: 10.1007/s13370-012-0114-6
Google Scholar
[11]
G. K. Ramesh, B. J. Gireesha, R. S. R.Gorla, Boundary layer flow past a stretching sheet with fluid-particle suspension and convective boundary condition, Heat and Mass Transfer. 51(8) (2015) 1061-1066.
DOI: 10.1007/s00231-014-1477-z
Google Scholar
[12]
Sunil, .A. Sharma, P. Kumar, U. Gupta,The effect of magnetic-field dependent viscosity and rotation on ferrothermohaline convection saturating a porous medium, J. Geophysics and Eng., 2(2005) 238-251.
DOI: 10.1088/1742-2132/2/3/008
Google Scholar
[13]
M.A.A. Mahmoud,Thermal radiation effects on MHD flow of a micropolar fluid over a stretching surface with variable thermal conductivity, Physica. A., 375(2007) 401–410.
DOI: 10.1016/j.physa.2006.09.010
Google Scholar
[14]
G.C. Hazarika,Variable viscosity and thermal conductivity on convective heat transfer in a dusty fluid over a vertical permeable surface with radiation and viscous dissipation, Int. J. Comp. Appli., 103(11) (2014) 39-54.
DOI: 10.5120/18121-9439
Google Scholar
[15]
M.A. Seddeek, A. M. A.Meguid, Effects of radiation and thermal diffusivity on heat transfer over a stretching surface with variable heat flux, Phys. Lett. A., 348(2006)172–179.
DOI: 10.1016/j.physleta.2005.01.101
Google Scholar
[16]
S. M. Isa, A. Ali,Thermal radiation effect on hydromagnetic flow of dusty fluid over a stretching vertical surface, J. Teknologi (Sciences & Engineering), 71(5) (2014) 17–20.
DOI: 10.11113/jt.v71.3846
Google Scholar
[17]
S. Nadeem, R.U. Haq N.S. Akbar, Z.H. Khan,MHD three dimensional Casson fluid flow past a porous linearly stretching sheet, Alexandria Eng J., 52(4) (2013)577–82.
DOI: 10.1016/j.aej.2013.08.005
Google Scholar
[18]
M. G. Reddy, M.V.V.N.L. Sudha Rani, O.D. Makinde, Effects of nonlinear thermal radiation and thermo-diffusion on MHD Carreau fluid flow past a stretching surface with slip. Diffusion Foundation, 11(2017) 57-71.
DOI: 10.4028/www.scientific.net/df.11.57
Google Scholar
[19]
S.A. Shehzad, A. Alsaedi, T. Hayat,Three-dimensional flow of Jeffery fluid with convective surface boundary conditions, Int. J. Heat Mass Transfer55(2012)3971–3976.
DOI: 10.1016/j.ijheatmasstransfer.2012.03.027
Google Scholar
[20]
M. Khan, Hashima, Boundary layer flow and heat transfer to Carreau fluid over a nonlinear stretching sheet, AIP Advances, 5(2015) 1-14.
DOI: 10.1063/1.4932627
Google Scholar
[21]
N.S. Akbar, S. Nadeem, R. U. Haq, S. Ye,MHD stagnation point flow of Carreau fluid toward a permeable shrinking sheet:Dual solutions, Ain Shams Engineering Journal, 5(4)(2014) 1233-1239.
DOI: 10.1016/j.asej.2014.05.006
Google Scholar
[22]
A. Ishak, R. Nazar, I. Pop,Heat transfer over a stretching surface with variable heat flux in micro polar fluids, Phys. Lett. A. 372(5) (2008) 559–61.
DOI: 10.1016/j.physleta.2007.08.003
Google Scholar
[23]
S. Suneetha, K. Gangadhar, N. B. Reddy,Thermal radiation effect on MHD stagnation point flow of a Carreau fluid with convective boundary condition, International Conference on Frontiers in Mathematics, (2015) 211-216.
Google Scholar
[24]
I. Ullah, S. Shafie, O. D. Makinde, I. Khan,Unsteady MHD Falkner-Skan flow of Cassonnanofluid with generative/destructive chemical reaction,Chemical Engineering Science, 172 (2017) 694–706.
DOI: 10.1016/j.ces.2017.07.011
Google Scholar
[25]
W. Ibrahim, O. D. Makinde, Magnetohydrodynamic stagnation point flow and heat transfer of Casson nanofluid past a stretching sheet with slip and convective boundary condition, Journal of Aerospace Engineering, 29(2) (2016) Article# 04015037.
DOI: 10.1061/(asce)as.1943-5525.0000529
Google Scholar