[1]
A.C. Eringen, Theory of micropolar fluids, J. Math. Mech. 16 (1966) 1–18.
Google Scholar
[2]
A.C. Eringen, Theory of thermo micropolar fluids, J. Math. Anal. Appl. 38 (1972) 480–496.
Google Scholar
[3]
A.C. Eringen, Microcontinuum Field Theories. II: Fluent Media, Springer, New York, (2001).
Google Scholar
[4]
J. Peddieson, An application of the micropolar fluid model to the calculation of a turbulent shear flow, Int. J. Eng. Sci. 10 (1972)23–32.
DOI: 10.1016/0020-7225(72)90072-9
Google Scholar
[5]
S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, ASME-Publications-Fed, 231 (1995) 99-106.
Google Scholar
[6]
O. D. Makinde, K. G. Kumar, S. Manjunatha, B. J. Gireesha, Effect of nonlinear thermal radiation on MHD boundary layer flow and melting heat transfer of micro-polar fluid over a stretching surface with fluid particles suspension, Defect and Diffusion Forum, 378 (2017).
DOI: 10.4028/www.scientific.net/ddf.378.125
Google Scholar
[7]
P. M. Krishna, N. Sandeep, R. P. Sharma, O.D. Makinde, Thermal radiation effect on 3D slip motion of AlCu-Water and Cu-Water nanofluids over a variable thickness stretched surface, Defect and Diffusion Forum, 377(2017) 141-154.
DOI: 10.4028/www.scientific.net/ddf.377.141
Google Scholar
[8]
O.D. Makinde, W.A. Khan, J.R. Culham, MHD variable viscosity reacting flow over a convectively heated plate in a porous medium with thermophoresis and radiative heat transfer, International Journal of Heat and Mass Transfer, 93 (2016) 595–604.
DOI: 10.1016/j.ijheatmasstransfer.2015.10.050
Google Scholar
[9]
O.D. Makinde, W.A. Khan, Z.H. Khan, Stagnation point flow of MHD chemically reacting nanofluid over a stretching convective surface with slip and radiative heat,Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 231(4) (2017).
DOI: 10.1177/0954408916629506
Google Scholar
[10]
W. Ibrahim, O.D. Makinde, Magnetohydrodynamic stagnation point flow of a power-law nanofluid towards a convectively heated stretching sheet with slip, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 230(5) (2016).
DOI: 10.1177/0954408914550357
Google Scholar
[11]
R. Nazar, N. Amin, D. Filip, I. Pop, Stagnation point flow of a micropolar fluid towards a stretching sheet, Int. J. Non-Linear Mech. 39(7) (2004) 1227–35.
DOI: 10.1016/j.ijnonlinmec.2003.08.007
Google Scholar
[12]
R. Nazar, A. Ishak, I. Pop, Unsteady boundary layer flow over a stretching sheet in a micropolar fluid, Int. J. Math. Phys. Eng. Sci. 2(3) (2008) 161–165.
Google Scholar
[13]
S. R. Mishra, P.K. Pattnaik, G.C. Dash, Effect of heat source and double stratification on MHD free convection in a micropolar fluid, Alexandria Eng. J. 54(3) (2015)681-689.
DOI: 10.1016/j.aej.2015.04.010
Google Scholar
[14]
C. Perdikis, A. Raptis, Heat transfer of a micropolar fluid by the presence of radiation, Heat Mass Transf. 31(6) (1996) 381–2.
DOI: 10.1007/bf02172582
Google Scholar
[15]
E.L.A. Fauzia, S. Ahmada, I. Pop, Flow over a permeable stretching sheet in micropolarnanofluids with suction, AIP Conf. Proc.1605 (2014) 428–55.
Google Scholar
[16]
S.T. Hussain, S. Nadeem, R. U. Haq, Model-based analysis of micropolarnanofluid flow over a stretching surface, Eur. Phys. J. Plus. 129(8) (2014) 1–10.
DOI: 10.1140/epjp/i2014-14161-8
Google Scholar
[17]
R.U. Haq, S. Nadeem, N.S. Akbar, Z. H. Khan, Buoyancy and radiation effect on stagnation point flow of micropolarnanofluid along a vertically convective stretching surface, IEEE Trans. on Nano. 14(1) (2015) 42-50.
DOI: 10.1109/tnano.2014.2363684
Google Scholar
[18]
A. Hussanan, I. Khan, H. Hashim, M.K.A. Mohamed, N. Ishak, N.M. Sarif, and M.Z. Salleh, Unsteady MHD flow of some nanofluids past an accelerated vertical plate embedded in a porous medium, J. Teknologi, 78(2) (2016).
DOI: 10.11113/jt.v78.4900
Google Scholar
[19]
M. Shaikhoeslam, M. Hatami, D.D. Ganji, Micropolar fluid and heat transfer in a permeable channel using analytical method, J. Mol. Liq. 194 (2014) 30–6.
DOI: 10.1016/j.molliq.2014.01.005
Google Scholar
[20]
M. Naveed, Z. Abbas, M. Sajid, MHD flow of a micropolar fluid due to a curved stretching sheet with thermal radiation, J. Appl. Fluid Mech. 9(1) (2016)131–8.
DOI: 10.18869/acadpub.jafm.68.224.23967
Google Scholar
[21]
M. Sajid, S. A. Iqbal, M. Naveed, Z. Abbas, Joule heating and magnetohydrodynamic effects on ferrofluid flow in a semi-porous curved channel, J. Mol. Liq. 222 (2016) 1115–1120.
DOI: 10.1016/j.molliq.2016.08.001
Google Scholar
[22]
M.E.M. Khedr, A.J. Chamkha, M. Bayomi, MHD flow of a micropolar fluid past a stretched permeable surface with heat generation or absorption, Non-linear Anal. Model Control.14 (2009) 27–40.
DOI: 10.15388/na.2009.14.1.14528
Google Scholar
[23]
S. Das, R.N. Jana, O.D. Makinde, MHD boundary layer slip flow and heat transfer of nanofluid past a vertical stretching sheet with non-uniform heat generation/ absorption, Int. J. Nano. Sci. 13 (2014) 1450019.
DOI: 10.1142/s0219581x14500197
Google Scholar
[24]
J. Chamkha, A.M. Aly, MHD free convection flow of a nanofluid past a vertical plate in the presence of heat generation or absorption effects, Chem. Eng. Commun.198(3) (2010) 425–41.
DOI: 10.1080/00986445.2010.520232
Google Scholar
[25]
S.K. Jena, M.N. Mathur, Similarity solutions for laminar free convection flow of a thermo-micropolar fluid past a non-isothermal vertical flat plate, Int. J. Eng. Sci. 19(11) (1981) 1431–1439.
DOI: 10.1016/0020-7225(81)90040-9
Google Scholar
[26]
G. Ahmadi, Self-similar solution of incompressible micropolar boundary layer flow over a semi-infinite plate, Int. J. Eng. Sci. 4(7) (1976) 639–646.
DOI: 10.1016/0020-7225(76)90006-9
Google Scholar
[27]
S. S. Murshed, C.N. De Castro, M. J. V. Loureno, M.L.M. Lopes, F.J.V. Santos, A review of boiling and convective heat transfer with nanofluids, Renewable and Sustainable Energy Reviews, 15(5) (2011) 2342–2354.
DOI: 10.1016/j.rser.2011.02.016
Google Scholar
[28]
S. T. Hussain, S. Nadeem, and R. U. Haq, Model-based analysis of micropolar nanofluid flow over a stretching surface, The European Physical Journal Plus, 129: 161 (2014)1-10.
DOI: 10.1140/epjp/i2014-14161-8
Google Scholar
[29]
D. Pal, G. Mandal, Hydromagnetic convective-radiative boundary layer flow of nanofluids induced by a non-linear vertical stretching/shrinking sheet with viscous-Ohmic dissipation, Powder Technol. 279 (2015) 61–74.
DOI: 10.1016/j.powtec.2015.03.043
Google Scholar
[30]
K. A. Kline, A spin-vorticity relation for unidirectional plane flows of micropolar fluids, Int J. Eng. Sci. 15(2) (1977)131–134.
DOI: 10.1016/0020-7225(77)90028-3
Google Scholar
[31]
D. Pal, G. Mandal, K. Vajravelu, Flow and heat transfer of nanofluids at a stagnation point flow over a stretching/shrinking surface in a porous medium with thermal radiation, Appl. Math. Comput. 238 (2014) 208–24.
DOI: 10.1016/j.amc.2014.03.145
Google Scholar
[32]
D. Pal, S. Chatterjee, Heat and mass transfer in MHD non-Darcian flow of a micropolar fluid over a stretching sheet embedded in a porous media with non-uniform heat source and thermal radiation, Commun. Nonlinear Sci. Numer. Simulat. 15 (2010).
DOI: 10.1016/j.cnsns.2009.07.024
Google Scholar
[33]
C. Y. Wang, Free convection on a vertical stretching surface, J. Appl. Math. Mech. 69 (11) (1989) 418–420.
Google Scholar
[34]
H.C. Brinkman, The viscosity of concentrated suspensions and solutions, J. Chem. Phys.20(4) (1952) 571-571.
Google Scholar
[35]
S.M. Aminossadati, B. Ghasemi, Natural convection cooling of a localized heat source at the bottom of a nanofluid-filled enclosure, Eur. J. Mech. B. Fluids. 28 (2009) 630–640.
DOI: 10.1016/j.euromechflu.2009.05.006
Google Scholar
[36]
M. Turkyilmazoglu, I. Pop, Heat and mass transfer of unsteady natural convection flow of some nanofluids past a vertical infinite flat plate with radiation effect, Int. J. Heat Mass Transf. 59 (2013) 167–171.
DOI: 10.1016/j.ijheatmasstransfer.2012.12.009
Google Scholar
[37]
W.A. Khan, Z.H. Khan, R.U. Haq, Flow and heat transfer of ferrofluid over a flat plate with uniform heat flux, Eur. Phys. J. Plus. 130 (2015) 1–10.
DOI: 10.1140/epjp/i2015-15086-4
Google Scholar
[38]
G.C. Bourantas, V.C. Loukopoulos, Modeling the natural convective flow of micropolar nanofluids, Int. J. Heat Mass Transf. 68 (2014) 35–41.
DOI: 10.1016/j.ijheatmasstransfer.2013.09.006
Google Scholar