Magneto-Convective Heat Transfer in Micropolar Nanofluid over a Stretching Sheet with Non-Uniform Heat Source/Sink

Article Preview

Abstract:

The objective of investigation is to study the hydro-magnetic boundary layer micropolar nanofluid steady flow past a stretching sheet with a non-uniform heat suction/sink by taking into account of nanofluids containing Cu– water, TiO2–water, Al2O3–water, and Ag–water. As per the geometry of the flow configuration the conservation laws are transformed into a non-linear model. Using the appropriate analoguestransformations, the resultant equations are employing order approach along with shooting technique to derive closed form solutions for momentum, angular velocity, and temperature fields as well as couple stress, skin friction, local Nusselt number, and then to analyse and physical insight of various flow parameters on these fields. Also the numerical computations are performed and plotted through graphs and tables. It is found that the effect of volume fraction of nanoparticles on the fluid velocity, it decreases due to the absence of surface tension forces and hence, the momentum boundary layer thickness reduced. Furthermore, comparisons with published results are in very good agreement. Nomenclature

You might also be interested in these eBooks

Info:

Periodical:

Pages:

78-90

Citation:

Online since:

September 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.C. Eringen, Theory of micropolar fluids, J. Math. Mech. 16 (1966) 1–18.

Google Scholar

[2] A.C. Eringen, Theory of thermo micropolar fluids, J. Math. Anal. Appl. 38 (1972) 480–496.

Google Scholar

[3] A.C. Eringen, Microcontinuum Field Theories. II: Fluent Media, Springer, New York, (2001).

Google Scholar

[4] J. Peddieson, An application of the micropolar fluid model to the calculation of a turbulent shear flow, Int. J. Eng. Sci. 10 (1972)23–32.

DOI: 10.1016/0020-7225(72)90072-9

Google Scholar

[5] S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, ASME-Publications-Fed, 231 (1995) 99-106.

Google Scholar

[6] O. D. Makinde, K. G. Kumar, S. Manjunatha, B. J. Gireesha, Effect of nonlinear thermal radiation on MHD boundary layer flow and melting heat transfer of micro-polar fluid over a stretching surface with fluid particles suspension, Defect and Diffusion Forum, 378 (2017).

DOI: 10.4028/www.scientific.net/ddf.378.125

Google Scholar

[7] P. M. Krishna, N. Sandeep, R. P. Sharma, O.D. Makinde, Thermal radiation effect on 3D slip motion of AlCu-Water and Cu-Water nanofluids over a variable thickness stretched surface, Defect and Diffusion Forum, 377(2017) 141-154.

DOI: 10.4028/www.scientific.net/ddf.377.141

Google Scholar

[8] O.D. Makinde, W.A. Khan, J.R. Culham, MHD variable viscosity reacting flow over a convectively heated plate in a porous medium with thermophoresis and radiative heat transfer, International Journal of Heat and Mass Transfer, 93 (2016) 595–604.

DOI: 10.1016/j.ijheatmasstransfer.2015.10.050

Google Scholar

[9] O.D. Makinde, W.A. Khan, Z.H. Khan, Stagnation point flow of MHD chemically reacting nanofluid over a stretching convective surface with slip and radiative heat,Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 231(4) (2017).

DOI: 10.1177/0954408916629506

Google Scholar

[10] W. Ibrahim, O.D. Makinde, Magnetohydrodynamic stagnation point flow of a power-law nanofluid towards a convectively heated stretching sheet with slip, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 230(5) (2016).

DOI: 10.1177/0954408914550357

Google Scholar

[11] R. Nazar, N. Amin, D. Filip, I. Pop, Stagnation point flow of a micropolar fluid towards a stretching sheet, Int. J. Non-Linear Mech. 39(7) (2004) 1227–35.

DOI: 10.1016/j.ijnonlinmec.2003.08.007

Google Scholar

[12] R. Nazar, A. Ishak, I. Pop, Unsteady boundary layer flow over a stretching sheet in a micropolar fluid, Int. J. Math. Phys. Eng. Sci. 2(3) (2008) 161–165.

Google Scholar

[13] S. R. Mishra, P.K. Pattnaik, G.C. Dash, Effect of heat source and double stratification on MHD free convection in a micropolar fluid, Alexandria Eng. J. 54(3) (2015)681-689.

DOI: 10.1016/j.aej.2015.04.010

Google Scholar

[14] C. Perdikis, A. Raptis, Heat transfer of a micropolar fluid by the presence of radiation, Heat Mass Transf. 31(6) (1996) 381–2.

DOI: 10.1007/bf02172582

Google Scholar

[15] E.L.A. Fauzia, S. Ahmada, I. Pop, Flow over a permeable stretching sheet in micropolarnanofluids with suction, AIP Conf. Proc.1605 (2014) 428–55.

Google Scholar

[16] S.T. Hussain, S. Nadeem, R. U. Haq, Model-based analysis of micropolarnanofluid flow over a stretching surface, Eur. Phys. J. Plus. 129(8) (2014) 1–10.

DOI: 10.1140/epjp/i2014-14161-8

Google Scholar

[17] R.U. Haq, S. Nadeem, N.S. Akbar, Z. H. Khan, Buoyancy and radiation effect on stagnation point flow of micropolarnanofluid along a vertically convective stretching surface, IEEE Trans. on Nano. 14(1) (2015) 42-50.

DOI: 10.1109/tnano.2014.2363684

Google Scholar

[18] A. Hussanan, I. Khan, H. Hashim, M.K.A. Mohamed, N. Ishak, N.M. Sarif, and M.Z. Salleh, Unsteady MHD flow of some nanofluids past an accelerated vertical plate embedded in a porous medium, J. Teknologi, 78(2) (2016).

DOI: 10.11113/jt.v78.4900

Google Scholar

[19] M. Shaikhoeslam, M. Hatami, D.D. Ganji, Micropolar fluid and heat transfer in a permeable channel using analytical method, J. Mol. Liq. 194 (2014) 30–6.

DOI: 10.1016/j.molliq.2014.01.005

Google Scholar

[20] M. Naveed, Z. Abbas, M. Sajid, MHD flow of a micropolar fluid due to a curved stretching sheet with thermal radiation, J. Appl. Fluid Mech. 9(1) (2016)131–8.

DOI: 10.18869/acadpub.jafm.68.224.23967

Google Scholar

[21] M. Sajid, S. A. Iqbal, M. Naveed, Z. Abbas, Joule heating and magnetohydrodynamic effects on ferrofluid flow in a semi-porous curved channel, J. Mol. Liq. 222 (2016) 1115–1120.

DOI: 10.1016/j.molliq.2016.08.001

Google Scholar

[22] M.E.M. Khedr, A.J. Chamkha, M. Bayomi, MHD flow of a micropolar fluid past a stretched permeable surface with heat generation or absorption, Non-linear Anal. Model Control.14 (2009) 27–40.

DOI: 10.15388/na.2009.14.1.14528

Google Scholar

[23] S. Das, R.N. Jana, O.D. Makinde, MHD boundary layer slip flow and heat transfer of nanofluid past a vertical stretching sheet with non-uniform heat generation/ absorption, Int. J. Nano. Sci. 13 (2014) 1450019.

DOI: 10.1142/s0219581x14500197

Google Scholar

[24] J. Chamkha, A.M. Aly, MHD free convection flow of a nanofluid past a vertical plate in the presence of heat generation or absorption effects, Chem. Eng. Commun.198(3) (2010) 425–41.

DOI: 10.1080/00986445.2010.520232

Google Scholar

[25] S.K. Jena, M.N. Mathur, Similarity solutions for laminar free convection flow of a thermo-micropolar fluid past a non-isothermal vertical flat plate, Int. J. Eng. Sci. 19(11) (1981) 1431–1439.

DOI: 10.1016/0020-7225(81)90040-9

Google Scholar

[26] G. Ahmadi, Self-similar solution of incompressible micropolar boundary layer flow over a semi-infinite plate, Int. J. Eng. Sci. 4(7) (1976) 639–646.

DOI: 10.1016/0020-7225(76)90006-9

Google Scholar

[27] S. S. Murshed, C.N. De Castro, M. J. V. Loureno, M.L.M. Lopes, F.J.V. Santos, A review of boiling and convective heat transfer with nanofluids, Renewable and Sustainable Energy Reviews, 15(5) (2011) 2342–2354.

DOI: 10.1016/j.rser.2011.02.016

Google Scholar

[28] S. T. Hussain, S. Nadeem, and R. U. Haq, Model-based analysis of micropolar nanofluid flow over a stretching surface, The European Physical Journal Plus, 129: 161 (2014)1-10.

DOI: 10.1140/epjp/i2014-14161-8

Google Scholar

[29] D. Pal, G. Mandal, Hydromagnetic convective-radiative boundary layer flow of nanofluids induced by a non-linear vertical stretching/shrinking sheet with viscous-Ohmic dissipation, Powder Technol. 279 (2015) 61–74.

DOI: 10.1016/j.powtec.2015.03.043

Google Scholar

[30] K. A. Kline, A spin-vorticity relation for unidirectional plane flows of micropolar fluids, Int J. Eng. Sci. 15(2) (1977)131–134.

DOI: 10.1016/0020-7225(77)90028-3

Google Scholar

[31] D. Pal, G. Mandal, K. Vajravelu, Flow and heat transfer of nanofluids at a stagnation point flow over a stretching/shrinking surface in a porous medium with thermal radiation, Appl. Math. Comput. 238 (2014) 208–24.

DOI: 10.1016/j.amc.2014.03.145

Google Scholar

[32] D. Pal, S. Chatterjee, Heat and mass transfer in MHD non-Darcian flow of a micropolar fluid over a stretching sheet embedded in a porous media with non-uniform heat source and thermal radiation, Commun. Nonlinear Sci. Numer. Simulat. 15 (2010).

DOI: 10.1016/j.cnsns.2009.07.024

Google Scholar

[33] C. Y. Wang, Free convection on a vertical stretching surface, J. Appl. Math. Mech. 69 (11) (1989) 418–420.

Google Scholar

[34] H.C. Brinkman, The viscosity of concentrated suspensions and solutions, J. Chem. Phys.20(4) (1952) 571-571.

Google Scholar

[35] S.M. Aminossadati, B. Ghasemi, Natural convection cooling of a localized heat source at the bottom of a nanofluid-filled enclosure, Eur. J. Mech. B. Fluids. 28 (2009) 630–640.

DOI: 10.1016/j.euromechflu.2009.05.006

Google Scholar

[36] M. Turkyilmazoglu, I. Pop, Heat and mass transfer of unsteady natural convection flow of some nanofluids past a vertical infinite flat plate with radiation effect, Int. J. Heat Mass Transf. 59 (2013) 167–171.

DOI: 10.1016/j.ijheatmasstransfer.2012.12.009

Google Scholar

[37] W.A. Khan, Z.H. Khan, R.U. Haq, Flow and heat transfer of ferrofluid over a flat plate with uniform heat flux, Eur. Phys. J. Plus. 130 (2015) 1–10.

DOI: 10.1140/epjp/i2015-15086-4

Google Scholar

[38] G.C. Bourantas, V.C. Loukopoulos, Modeling the natural convective flow of micropolar nanofluids, Int. J. Heat Mass Transf. 68 (2014) 35–41.

DOI: 10.1016/j.ijheatmasstransfer.2013.09.006

Google Scholar