MHD Slip Flow of Cu-Kerosene Nanofluid in a Channel with Stretching Walls Using 3-Stage Lobatto IIIA Formula

Article Preview

Abstract:

In this paper, rheology of laminar incompressible Copper-Kerosene nanofluid in a channel with stretching walls under the influence of transverse magnetic field is investigated. The main structure of the partial differential equations was taken from the law of conservation of mass, momentum and energy equations. Governing boundary layer equations are transformed into nonlinear ordinary differential equations by using similarity variables and then solved with 3-stage Lobatto IIIA formula. Numerical results were compared with another numerical method (Runge-Kutta-Fehlberg) and found excellent agreement. The influence of physical parameters Reynolds number, magnetic number, solid volume fraction, momentum and thermal slip parameters on velocity and temperature profile considered. Numerical results revealed that solid volume fraction decreases the velocity of nanofluid particles near the lower wall of the channel and increase the thermal boundary layer thickness in the channel.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

51-62

Citation:

Online since:

September 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.A.A. Hamad, I. Pop, A.I.M. Ismail, Magnetic field effects on free convection flow of a nanofluid past a vertical semi-infinite flat plate, Nonlinear Anal. Real World Appl. 12, (2011)1338–1346.

DOI: 10.1016/j.nonrwa.2010.09.014

Google Scholar

[2] S. Khamis, O. D. Makinde, Y. Nkansah-Gyekye, Unsteady flow of variable viscosity Cu-water and Al2O3-water nanofluids in a porous pipe with buoyancy force. International Journal of Numerical Methods in Heat and Fluid Flow, 25(7) (2015) 1638 – 1657.

DOI: 10.1108/hff-09-2014-0286

Google Scholar

[3] O. D. Makinde, A. Aziz, Boundary layer flow of a nanofluid past a stretching sheet with aconvective boundary condition.International Journal of Thermal Sciences, 50 (2011) 1326-1332.

DOI: 10.1016/j.ijthermalsci.2011.02.019

Google Scholar

[4] A. M. Olanrewaju, O. D. Makinde, On boundary layer stagnation point flow of a nanofluid over a permeable flat surface with Newtonian heating. Chemical Engineering Communications, 200(6) (2013) 836-852.

DOI: 10.1080/00986445.2012.721825

Google Scholar

[5] X. Wang, X. Xu, S.U. S. Choi, Thermal conductivity of nanoparticle-fluid mixture, J. Thermophys. Heat Transf. 13 (1999) 474–480.

Google Scholar

[6] J.C. Maxwell, Electricity and Magnetism, Clarendon Press: Oxford, England, UK, 3rd ed. (1904).

Google Scholar

[7] S. Das, R.N. Jana, O.D. Makinde, Magnetohydrodynamic free convective flow of nanofluid past an oscillating porous flat plate in a rotating system with thermal radiation and Hall effects. Journal of Mechanics, 32(2) (2016) 197-210.

DOI: 10.1017/jmech.2015.49

Google Scholar

[8] W. A. Khan, O. D. Makinde, Z. H. Khan, Non-aligned MHD stagnation point flow of variable viscosity nanofluids past a stretching sheet with radiative heat. International Journal of Heat and Mass Transfer, 96 (2016) 525-534.

DOI: 10.1016/j.ijheatmasstransfer.2016.01.052

Google Scholar

[9] O.D. Makinde, W.A. Khan, J.R. Culham, MHD variable viscosity reacting flow over a convectively heated plate in a porous medium with thermophoresis and radiative heat transfer. International Journal of Heat and Mass Transfer, 93 (2016) 595–604.

DOI: 10.1016/j.ijheatmasstransfer.2015.10.050

Google Scholar

[10] M. Sheikholeslami, M. Hatami & D. D. Ganji, Analytical investigation of MHD nanofluid flow in a semi-porous channel. Powder Technology, 246 (2013) 327-336.

DOI: 10.1016/j.powtec.2013.05.030

Google Scholar

[11] M. Jafaryar, S. I. Pourmousavi, M. Hosseini, E. Mohammadian, Application of DTM for 2D viscous flow through expanding or contracting gaps with permeable walls. New Trends in Mathematical Sciences, 2(3) (2014) 145-158.

Google Scholar

[12] M. Hatami, M. Sheikholeslami, M. Hosseini, D. D. Ganji, Analytical investigation of MHD nanofluid flow in non-parallel walls. Journal of Molecular Liquids, 194 (2014) 251-259.

DOI: 10.1016/j.molliq.2014.03.002

Google Scholar

[13] S. Mosayebidorcheh, O.D. Makinde, D.D. Ganji, M. A. Chermahini, DTM-FDM hybrid approach to unsteady MHD Couette flow and heat transfer of dusty fluid with variable properties. Thermal Science and Engineering Progress, 2 (2017) 57–63.

DOI: 10.1016/j.tsep.2017.04.003

Google Scholar

[14] A. Majidian, M. Fakour, A. Vahabzadeh, Analytical investigation of the Laminar viscous flow in a semi-porous channel in the presence of a uniform magnetic field. International Journal of Partial Differential Equations and Applications, 2(4) (2014).

Google Scholar

[15] E. Mohammadian, S. E.Ghasemi, H. Poorgashti, M. Hosseini, D. D. Ganji, Thermal investigation of Cu–water nanofluid between two vertical planes. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 229(1) (2015).

DOI: 10.1177/0954408913509089

Google Scholar

[16] S. Srinivas, A. Vijayalakshmi, A. S. Reddy, Flow and Heat Transfer of Gold- Blood Nanofluid in a Porous Channel with Moving/Stationary Walls. Journal of Mechanics, 33(3), (2017) 395-404.

DOI: 10.1017/jmech.2016.102

Google Scholar

[17] O. D. Makinde, Z. H. Khan, W. A. Khan, M. S. Tshehla, Magneto hemodynamics of nanofluid with heat and mass transfer in a slowly varying symmetrical channel. International Journal of Engineering Research in Africa, 28 (2017) 118-141.

DOI: 10.4028/www.scientific.net/jera.28.118

Google Scholar

[18] K. Singh, S. K. Rawat, M. Kumar, Heat and Mass Transfer on Squeezing Unsteady MHD Nanofluid Flow between Parallel Plates with Slip Velocity Effect. Journal of Nanoscience, (2016) 9708562.

DOI: 10.1155/2016/9708562

Google Scholar

[19] J. Raza, A. M. Rohni, Z. Omar, MHD flow and heat transfer of Cu–water nanofluid in a semi porous channel with stretching walls. International Journal of Heat and Mass Transfer, 103 (2016) 336-340.

DOI: 10.1016/j.ijheatmasstransfer.2016.07.064

Google Scholar

[20] J. Raza, A. M. Rohni, Z. Omar, A note on some solutions of copper-water (Cu-water) nanofluids in a channel with slowly expanding or contracting walls with heat transfer. Mathematical and Computational Applications, 21(2) (2016) 24.

DOI: 10.3390/mca21020024

Google Scholar

[21] J. Raza, A. M. Rohni, Z. Omar, Numerical Investigation of Copper-Water (Cu-Water) Nanofluid with Different Shapes of Nanoparticles in a Channel with Stretching Wall: Slip Effects. Mathematical and Computational Applications, 21(4) (2016) 43.

DOI: 10.3390/mca21040043

Google Scholar

[22] J. Raza, A. M. Rohni, Z. Omar, M. Awais, Rheology of the Cu-H2O nanofluid in porous channel with heat transfer: Multiple solutions. Physica E: Low-dimensional Systems and Nanostructures, 86 (2016) 248-252.

DOI: 10.1016/j.physe.2016.10.038

Google Scholar

[23] J. Raza, A. M. Rohni, Z. Omar, A. Q. Baig, Physicochemical and rheological properties of Titania and carbon nanotubes in a channel with changing walls: Investigation of critical points. Multidiscipline Modeling in Materials and Structures, 12(4) (2016).

DOI: 10.1108/mmms-07-2016-0028

Google Scholar

[24] M. Hatami, M. M. Sheikholeslami, D. D. Ganji, Laminar flow and heat transfer of nanofluid between contracting and rotating disks by least square method. Powder Technology, 253 (2014) 769-779.

DOI: 10.1016/j.powtec.2013.12.053

Google Scholar

[25] F. Mebarek-oudina, R. Bessaïh, Numerical modeling of MHD stability in a cylindrical configuration. Journal of the Franklin Institute, 351(2) (2014) 667-681.

DOI: 10.1016/j.jfranklin.2012.11.004

Google Scholar

[26] F. Mebarek-Oudina, R. Bessaih, Oscillatory magnetohydrodynamic natural convection of liquid metal between vertical coaxial cylinders. J. Appl. Fluid Mech, 9(4) (2016) 1655-1665.

DOI: 10.18869/acadpub.jafm.68.235.24813

Google Scholar

[27] F. Mebarek-Oudina, Numerical modeling of the hydrodynamic stability in vertical annulus with heat source of different lengths. Engineering Science and Technology, 20 (4) (2017) 1324-1333.

DOI: 10.1016/j.jestch.2017.08.003

Google Scholar

[28] F. Mebarek-Oudina, R. Bessaih, Oscillatory Mixed Convection Flow in a Cylindrical Container with Rotating Disk Under Axial Magnetic Field and Various Wall Electrical Conductivity. International Review of Physics, 4(1) (2010) 45-51.

Google Scholar

[29] F. Mebarek-Oudina, R. Bessaïh, Stabilité Magnétohydrodynamique des ecoulements de convection naturelle dans une configuration cylindrique de type Czochralski, Société Française de Thermique, 1 (2007) 451-457.

Google Scholar

[30] F. Mebarek-Oudina, R. Bessaïh, Effect of the geometry on the MHD stability of natural convection flows. Institute of Thermomechanics AS CR, v. v. i., Prague. issue 75, (2014) 159-161.

Google Scholar

[31] F. Mebarek-Oudina, Étude numérique de la stabilité magnétohydrodynamique. ISBN: 978-3-639-60865-6, Éditions Universitaires Européennes, Germany, (2017).

Google Scholar

[32] F. Mebarek-Oudina, Transfert Thermique Convectif des Nanofluides dans un Espace Annulaire entre deux Cylindres Verticaux avec une Source de Chaleur, Journées Int. de Thermique, Monastir, October 25-27, (2017).

DOI: 10.1016/s0035-3159(98)80064-0

Google Scholar

[33] F. Mebarek-Oudina, R. Bessaïh, Magnetohydrodynamic stability of natural convection flows in Czochralski crystal growth, World Journal of Engineering 4 (4) (2007) 15–22.

Google Scholar

[34] .A. Shercliff, Textbook of Magnetohydrodynamics (1965).

Google Scholar

[35] V.J. Rossow, On flow of electrically conducting fluids over a flat plate in the presence of a transverse magnetic field (1958).

Google Scholar

[36] J. Raza, A. M. Rohni, Z. Omar, Unsteady Flow of a Casson Fluid between Two Orthogonally Moving Porous Disks: A Numerical Investigation. Communications in Numerical Analysis, 2 (2017) 109-124.

DOI: 10.5899/2017/cna-00291

Google Scholar