[1]
M.A.A. Hamad, I. Pop, A.I.M. Ismail, Magnetic field effects on free convection flow of a nanofluid past a vertical semi-infinite flat plate, Nonlinear Anal. Real World Appl. 12, (2011)1338–1346.
DOI: 10.1016/j.nonrwa.2010.09.014
Google Scholar
[2]
S. Khamis, O. D. Makinde, Y. Nkansah-Gyekye, Unsteady flow of variable viscosity Cu-water and Al2O3-water nanofluids in a porous pipe with buoyancy force. International Journal of Numerical Methods in Heat and Fluid Flow, 25(7) (2015) 1638 – 1657.
DOI: 10.1108/hff-09-2014-0286
Google Scholar
[3]
O. D. Makinde, A. Aziz, Boundary layer flow of a nanofluid past a stretching sheet with aconvective boundary condition.International Journal of Thermal Sciences, 50 (2011) 1326-1332.
DOI: 10.1016/j.ijthermalsci.2011.02.019
Google Scholar
[4]
A. M. Olanrewaju, O. D. Makinde, On boundary layer stagnation point flow of a nanofluid over a permeable flat surface with Newtonian heating. Chemical Engineering Communications, 200(6) (2013) 836-852.
DOI: 10.1080/00986445.2012.721825
Google Scholar
[5]
X. Wang, X. Xu, S.U. S. Choi, Thermal conductivity of nanoparticle-fluid mixture, J. Thermophys. Heat Transf. 13 (1999) 474–480.
Google Scholar
[6]
J.C. Maxwell, Electricity and Magnetism, Clarendon Press: Oxford, England, UK, 3rd ed. (1904).
Google Scholar
[7]
S. Das, R.N. Jana, O.D. Makinde, Magnetohydrodynamic free convective flow of nanofluid past an oscillating porous flat plate in a rotating system with thermal radiation and Hall effects. Journal of Mechanics, 32(2) (2016) 197-210.
DOI: 10.1017/jmech.2015.49
Google Scholar
[8]
W. A. Khan, O. D. Makinde, Z. H. Khan, Non-aligned MHD stagnation point flow of variable viscosity nanofluids past a stretching sheet with radiative heat. International Journal of Heat and Mass Transfer, 96 (2016) 525-534.
DOI: 10.1016/j.ijheatmasstransfer.2016.01.052
Google Scholar
[9]
O.D. Makinde, W.A. Khan, J.R. Culham, MHD variable viscosity reacting flow over a convectively heated plate in a porous medium with thermophoresis and radiative heat transfer. International Journal of Heat and Mass Transfer, 93 (2016) 595–604.
DOI: 10.1016/j.ijheatmasstransfer.2015.10.050
Google Scholar
[10]
M. Sheikholeslami, M. Hatami & D. D. Ganji, Analytical investigation of MHD nanofluid flow in a semi-porous channel. Powder Technology, 246 (2013) 327-336.
DOI: 10.1016/j.powtec.2013.05.030
Google Scholar
[11]
M. Jafaryar, S. I. Pourmousavi, M. Hosseini, E. Mohammadian, Application of DTM for 2D viscous flow through expanding or contracting gaps with permeable walls. New Trends in Mathematical Sciences, 2(3) (2014) 145-158.
Google Scholar
[12]
M. Hatami, M. Sheikholeslami, M. Hosseini, D. D. Ganji, Analytical investigation of MHD nanofluid flow in non-parallel walls. Journal of Molecular Liquids, 194 (2014) 251-259.
DOI: 10.1016/j.molliq.2014.03.002
Google Scholar
[13]
S. Mosayebidorcheh, O.D. Makinde, D.D. Ganji, M. A. Chermahini, DTM-FDM hybrid approach to unsteady MHD Couette flow and heat transfer of dusty fluid with variable properties. Thermal Science and Engineering Progress, 2 (2017) 57–63.
DOI: 10.1016/j.tsep.2017.04.003
Google Scholar
[14]
A. Majidian, M. Fakour, A. Vahabzadeh, Analytical investigation of the Laminar viscous flow in a semi-porous channel in the presence of a uniform magnetic field. International Journal of Partial Differential Equations and Applications, 2(4) (2014).
Google Scholar
[15]
E. Mohammadian, S. E.Ghasemi, H. Poorgashti, M. Hosseini, D. D. Ganji, Thermal investigation of Cu–water nanofluid between two vertical planes. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 229(1) (2015).
DOI: 10.1177/0954408913509089
Google Scholar
[16]
S. Srinivas, A. Vijayalakshmi, A. S. Reddy, Flow and Heat Transfer of Gold- Blood Nanofluid in a Porous Channel with Moving/Stationary Walls. Journal of Mechanics, 33(3), (2017) 395-404.
DOI: 10.1017/jmech.2016.102
Google Scholar
[17]
O. D. Makinde, Z. H. Khan, W. A. Khan, M. S. Tshehla, Magneto hemodynamics of nanofluid with heat and mass transfer in a slowly varying symmetrical channel. International Journal of Engineering Research in Africa, 28 (2017) 118-141.
DOI: 10.4028/www.scientific.net/jera.28.118
Google Scholar
[18]
K. Singh, S. K. Rawat, M. Kumar, Heat and Mass Transfer on Squeezing Unsteady MHD Nanofluid Flow between Parallel Plates with Slip Velocity Effect. Journal of Nanoscience, (2016) 9708562.
DOI: 10.1155/2016/9708562
Google Scholar
[19]
J. Raza, A. M. Rohni, Z. Omar, MHD flow and heat transfer of Cu–water nanofluid in a semi porous channel with stretching walls. International Journal of Heat and Mass Transfer, 103 (2016) 336-340.
DOI: 10.1016/j.ijheatmasstransfer.2016.07.064
Google Scholar
[20]
J. Raza, A. M. Rohni, Z. Omar, A note on some solutions of copper-water (Cu-water) nanofluids in a channel with slowly expanding or contracting walls with heat transfer. Mathematical and Computational Applications, 21(2) (2016) 24.
DOI: 10.3390/mca21020024
Google Scholar
[21]
J. Raza, A. M. Rohni, Z. Omar, Numerical Investigation of Copper-Water (Cu-Water) Nanofluid with Different Shapes of Nanoparticles in a Channel with Stretching Wall: Slip Effects. Mathematical and Computational Applications, 21(4) (2016) 43.
DOI: 10.3390/mca21040043
Google Scholar
[22]
J. Raza, A. M. Rohni, Z. Omar, M. Awais, Rheology of the Cu-H2O nanofluid in porous channel with heat transfer: Multiple solutions. Physica E: Low-dimensional Systems and Nanostructures, 86 (2016) 248-252.
DOI: 10.1016/j.physe.2016.10.038
Google Scholar
[23]
J. Raza, A. M. Rohni, Z. Omar, A. Q. Baig, Physicochemical and rheological properties of Titania and carbon nanotubes in a channel with changing walls: Investigation of critical points. Multidiscipline Modeling in Materials and Structures, 12(4) (2016).
DOI: 10.1108/mmms-07-2016-0028
Google Scholar
[24]
M. Hatami, M. M. Sheikholeslami, D. D. Ganji, Laminar flow and heat transfer of nanofluid between contracting and rotating disks by least square method. Powder Technology, 253 (2014) 769-779.
DOI: 10.1016/j.powtec.2013.12.053
Google Scholar
[25]
F. Mebarek-oudina, R. Bessaïh, Numerical modeling of MHD stability in a cylindrical configuration. Journal of the Franklin Institute, 351(2) (2014) 667-681.
DOI: 10.1016/j.jfranklin.2012.11.004
Google Scholar
[26]
F. Mebarek-Oudina, R. Bessaih, Oscillatory magnetohydrodynamic natural convection of liquid metal between vertical coaxial cylinders. J. Appl. Fluid Mech, 9(4) (2016) 1655-1665.
DOI: 10.18869/acadpub.jafm.68.235.24813
Google Scholar
[27]
F. Mebarek-Oudina, Numerical modeling of the hydrodynamic stability in vertical annulus with heat source of different lengths. Engineering Science and Technology, 20 (4) (2017) 1324-1333.
DOI: 10.1016/j.jestch.2017.08.003
Google Scholar
[28]
F. Mebarek-Oudina, R. Bessaih, Oscillatory Mixed Convection Flow in a Cylindrical Container with Rotating Disk Under Axial Magnetic Field and Various Wall Electrical Conductivity. International Review of Physics, 4(1) (2010) 45-51.
Google Scholar
[29]
F. Mebarek-Oudina, R. Bessaïh, Stabilité Magnétohydrodynamique des ecoulements de convection naturelle dans une configuration cylindrique de type Czochralski, Société Française de Thermique, 1 (2007) 451-457.
Google Scholar
[30]
F. Mebarek-Oudina, R. Bessaïh, Effect of the geometry on the MHD stability of natural convection flows. Institute of Thermomechanics AS CR, v. v. i., Prague. issue 75, (2014) 159-161.
Google Scholar
[31]
F. Mebarek-Oudina, Étude numérique de la stabilité magnétohydrodynamique. ISBN: 978-3-639-60865-6, Éditions Universitaires Européennes, Germany, (2017).
Google Scholar
[32]
F. Mebarek-Oudina, Transfert Thermique Convectif des Nanofluides dans un Espace Annulaire entre deux Cylindres Verticaux avec une Source de Chaleur, Journées Int. de Thermique, Monastir, October 25-27, (2017).
DOI: 10.1016/s0035-3159(98)80064-0
Google Scholar
[33]
F. Mebarek-Oudina, R. Bessaïh, Magnetohydrodynamic stability of natural convection flows in Czochralski crystal growth, World Journal of Engineering 4 (4) (2007) 15–22.
Google Scholar
[34]
.A. Shercliff, Textbook of Magnetohydrodynamics (1965).
Google Scholar
[35]
V.J. Rossow, On flow of electrically conducting fluids over a flat plate in the presence of a transverse magnetic field (1958).
Google Scholar
[36]
J. Raza, A. M. Rohni, Z. Omar, Unsteady Flow of a Casson Fluid between Two Orthogonally Moving Porous Disks: A Numerical Investigation. Communications in Numerical Analysis, 2 (2017) 109-124.
DOI: 10.5899/2017/cna-00291
Google Scholar