Analysis of Heat Transfer in a Cylindrical Spine Fin with Variable Thermal Properties

Article Preview

Abstract:

In this paper we analyse the heat transfer in a cylindrical spine fin. Here, both the heat transfer coefficient and thermal conductivity are temperature dependent. The resulting 2+1 dimension partial differential equation (PDE) is rendered nonlinear and difficult to solve exactly, particularly with prescribed initial and boundary conditions. We employ the three dimensional differential transform methods (3D DTM) to contract the approximate analytical solutions. Furthermore we utilize numerical techniques to determine approximate numerical solutions. The effects of parameters, appearing in the boundary value problem (BVP), on temperature profile of the fin are studied.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

10-22

Citation:

Online since:

September 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.D. Mhlongo, R.J. Moitsheki, Some exact solutions of nonlinear fin problem for steady heat transfer in longitudinal fin with different profiles, Advances in Mathematical Physics, vol. 2014, Article ID 947160, 16 pages, (2014).

DOI: 10.1155/2014/947160

Google Scholar

[2] H.S. Kang, D.C. Look Jr., Two-dimensional trapezoidal fins analysis, Computational Mechanics, 19(3): 247-250, (1997).

DOI: 10.1007/s004660050173

Google Scholar

[3] A.D. Kraus, A. Aziz, J. Welty, Extended surface heat transfer, John Wiley and Sons, (2002).

Google Scholar

[4] A. Moradi, H. Ahmadikia, Analytical solution for different profiles of fin with temperaturedependent thermal conductivity, Mathematical Problems in Engineering, vol. 2010, Article ID 568263, 15 pages, (2011).

DOI: 10.1155/2010/568263

Google Scholar

[5] F. Khani, M.A. Raji, H.H. Nejad, Analytical solutions and efficiency of the nonlinear fin problem with temperature-dependent thermal conductivity and heat transfer coefficient, Communications in Nonlinear Science and Numerical Simulation, 14(8): 3327-3338, (2009).

DOI: 10.1016/j.cnsns.2009.01.012

Google Scholar

[6] P.L. Ndlovu, R.J. Moitsheki, Application of the two-dimensional differential transform method to heat conduction problem for heat transfer in longitudinal rectangular and convex parabolic fins, Communications in Nonlinear Science and Numerical Simulation 18(10): 2689-2698, (2013).

DOI: 10.1016/j.cnsns.2013.02.019

Google Scholar

[7] R.J. Moitsheki, C. Harley, Steady thermal analysis of two-dimensional cylindrical pin fin with a non-constant base temperature, Mathematical Problems in Engineering, vol. 2011, Article ID 132457, 17 pages. (2011).

DOI: 10.1155/2011/132457

Google Scholar

[8] R.J. Moitsheki, A. Rowjee, Steady heat transfer through a two-dimensional rectangular straight fin, Mathematical Problems in Engineering, vol. 2011, Article ID 826819, 13 pages, (2011).

DOI: 10.1155/2011/826819

Google Scholar

[9] B.T.F. Chung, J.R. Iyer, Optimal design of longitudinal rectangular fins and cylindrical spines with variable heat transfer coefficient, Heat Transfer Engineering, 14(1): 31-42, (1993).

DOI: 10.1080/01457639308939792

Google Scholar

[10] S.M. Ali, A.H. Bokhari, F.D. Zaman, A.H. Kara, Invariance, conservation laws and exact solutions of nonlinear cylindrical pin fin equation, Z. Naturfirsch, 69n: 195-198, (2013).

DOI: 10.5560/zna.2014-0008

Google Scholar

[11] S.M. Ali, A.H. Bokhari, F.D. Zaman, A Lie symmetry classification of a nonlinear fin equation in cylindrical coordinates, Abstract and Applied Analysis, Vol 2014, Article ID 527410, 10 pages, (2014).

DOI: 10.1155/2014/527410

Google Scholar

[12] S. Yadav, K.M. Pandey, A comparative thermal analysis of pin fins for improved heat transfer in forced convection, Materials Today: Proceedings, 5: 1711-1717, (2018).

DOI: 10.1016/j.matpr.2017.11.268

Google Scholar

[13] J. K. Zhou, Differential transform method and its applications for electric circuits, Huazhong University Press, (1986).

Google Scholar

[14] A. Kurnaz, G. Oturanç, M.E. Kiris, n-Dimensional differential transformation method for solving PDEs, International Journal of Computer Mathematics, 82(3): 369-380, (2005).

DOI: 10.1080/0020716042000301725

Google Scholar

[15] M. Bakhshi, M. Asghari-Larimi, M. Asghari-Larimi, Three-dimensional differential transform method for solving nonlinear three-dimensional Volterra integral equations, The Journal of Mathematics and Computer Science, 2: 246-256, (2012).

DOI: 10.22436/jmcs.04.02.14

Google Scholar

[16] K. Tabatabaei, E. Celik, R. Tabatabaei, The differential transform method for solving heat-like and wave-like equations with variable coefficients, Turkish Journal of Physics, 36(1): 87-98, (2012).

DOI: 10.3906/fiz-1102-6

Google Scholar

[17] R.J Moitsheki, T. Hayat, M.Y. Malik, Some exact solutions of the fin problem with power law temperature-dependent thermal conductivity, Nonlinear Analysis: Real world Applications, 11(5): 3287-3294, (2010).

DOI: 10.1016/j.nonrwa.2009.11.021

Google Scholar

[18] P.L. Ndlovu, R.J. Moitsheki, Analytical solutions for steady heat transfer in longitudinal fins with temperature-dependent properties, Mathematical Problems in Engineering, vol.2013, Article ID 273052, 14 pages. (2013).

DOI: 10.1155/2013/273052

Google Scholar

[19] A. Aziz, O.D. Makinde: Entropy generation minimization design of a two-dimensional orthotropic convection pin fin, International Journal of Exergy, 7 (5), 579-592, (2010).

DOI: 10.1504/ijex.2010.034930

Google Scholar

[20] O.D. Makinde, A. Aziz: Analysis of entropy generation and thermal stability in a long hollow cylinder. Heat and Mass Transfer, Vol. 47, 1407-1415, (2011).

DOI: 10.1007/s00231-011-0807-7

Google Scholar

[21] L.C.G. Rogers, D. Talay, Numercial methods in finance, Cambridge University Press, Cambridge, (1997).

Google Scholar

[22] R.L. Burden, J.D. Faires, Numerical analysis, Brooks/Cole, Grove, 7th ed., (2001).

Google Scholar

[23] J.J.E. Cartwright, O. Piro, The dynamics of Runge-Kutta methods. Int. J. Bifurcation Chaos, 2, 427-449, (1992).

DOI: 10.1142/s0218127492000641

Google Scholar