Temperature Response in Living Skin Tissue Subject to Convective Heat Flux

Article Preview

Abstract:

This paper examines the heat transfer in living skin tissue that is subjected to a convective heating. The tissue temperature evolution over time is classically described by the one-dimensional Pennes' bioheat transfer equation which is solved by applying Laplace transform method. The heat transfer analysis on skin tissue (dermis and epidermis) has only been studied defining the Biot number. The result shows that the temperature in skin tissue is less subject to the convected heating skin compared to constant skin temperature. The study also shows that the Biot number has a significant impact on the temperature distribution in the layer of living tissues. This study finds its application in thermal treatment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-9

Citation:

Online since:

September 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.B. Roemer, Engineering Aspects of Hyperthermia Therapy, Ann. Rev. Biomed. Eng. 1 (1999) 347–376.

Google Scholar

[2] O. D. Makinde, On thermal stability of a reactive third-grade fluid in a channel with convective cooling at the walls, Applied Mathematics and Computation, 213 (2009) 170-276.

DOI: 10.1016/j.amc.2009.03.003

Google Scholar

[3] H.H. Pennes, Analysis of tissue and arterial blood temperatures in resting human forearm, J. Appl. Physiol. 1 (1948) 93-122.

DOI: 10.1152/jappl.1948.1.2.93

Google Scholar

[4] W. Wulff, The energy conservation equation for living tissues, IEEE Trans.-Biomed. Eng. 21 (1974) 494-495.

DOI: 10.1109/tbme.1974.324342

Google Scholar

[5] H.G. Klinger, Heat transfer in perfused biological tissue, I. General theory, Bull. Math. Biol. 36 (1974) 403-415.

DOI: 10.1016/s0092-8240(74)80038-8

Google Scholar

[6] M.M. Chen, K.R. Holmes, Microvascular Contributions in Tissue Heat Transfer, Ann. N. Y. Acad. Sci. 335 (1980) 137–150.

DOI: 10.1111/j.1749-6632.1980.tb50742.x

Google Scholar

[7] R. C. Eberhart, A. Shitzer. E. J. Hernandez, Ann. NY Acad. Sci. 335 (1980) 107-32.

Google Scholar

[8] K. R. Diller, J. W. Valvano, J. A. Pearce, Bioheat Transfer. The CRC Handbook of Thermal Engineering. Ed; Frank Kreith, CRC Press, (2000).

DOI: 10.1201/9781420050424.ch4.4

Google Scholar

[9] J.W. Durkee Jr., P.P. Antich, Exact solutions to the multi-region time-dependent bioheat equation with transient heat sources and boundary conditions, Phys. Med. Biol. 36 (1991) 345-368.

DOI: 10.1088/0031-9155/36/3/004

Google Scholar

[10] J. Liu, X. Chen, L.X. Xu, New thermal wave aspects on burn evaluation of skin subjected to instantaneous heating, IEEE Trans. Biomed. Eng. 46 (4) (1999) 420-428.

DOI: 10.1109/10.752939

Google Scholar

[11] O. D. Makinde, T. M. Acho, P. Sibanda, E. M. Lungu, The bio-mechanics of atherosclerosis development.CAMES, 10 (1) (2003) 23-31.

Google Scholar

[12] J. Prakash, O. D. Makinde, Radiative heat transfer to blood flow through a stenotic artery in the presence of erythrocytes and magnetic field. Latin American Applied Research, 41 (2011) 273-277.

Google Scholar

[13] J. Liu, L.X. Xu, Estimation of blood perfusion using phase shift in temperature response to the sinusoidal heating at the skin surface, IEEE Trans. Biomed. Eng. 46, (2001) 1037-1043.

DOI: 10.1109/10.784134

Google Scholar

[14] R. J. Moitsheki, O. D. Makinde, Some invariant solutions for a microwave heating model. Applied Mathematics and Computation, 191 (2007) 308-311.

DOI: 10.1016/j.amc.2007.02.088

Google Scholar

[15] Z.A. Deng, J. Liu, Analytical study on bioheat transfer problems with spatial or transient heating on skin surface or inside biological bodies, ASME J. Biomech. Eng. 120 (2002) 638-649.

DOI: 10.1115/1.1516810

Google Scholar

[16] J. Liu, Preliminary survey on the mechanisms of the wave-like behaviors of heat transfer in living tissues, Forsch. Ingenieurwesen/Eng. Res. 66 (2000) 1-10.

DOI: 10.1007/s100100000031

Google Scholar

[17] N. Ma, S. Jiang, H. Li, X. Zhang, Analysis of non-flourier effect and laser-induced thermal damage of laser-irradiated layered human skin tissue, Space Med. Med. Eng. 16 (2003) 133-137.

Google Scholar

[18] Z.S. Deng, J. Liu, Mathematical modeling of temperature mapping over skin surface and its implementation in thermal disease diagnostics, Comput. Biol. Med. 34 (2004) 495-521.

DOI: 10.1016/s0010-4825(03)00086-6

Google Scholar

[19] W. Shen, J. Zhang, F. Yang, Modeling and numerical simulation of bioheat transfer and biomechanics in soft tissue. Math. Comput. Modell. 41 (2005) 1251-1265.

DOI: 10.1016/j.mcm.2004.09.006

Google Scholar

[20] T.C. Shih, P. Yuan, W.L. Lin, H.S. Kou, Analytical analysis of the Pennes bioheat transfer equation with sinusoidal heat flux condition on skin surface, Med. Eng. Phys. 29 (2007) 946-953.

DOI: 10.1016/j.medengphy.2006.10.008

Google Scholar

[21] F. Xu, K.A. Seffen, T.J. Lu, Temperature dependent mechanical behaviors of skin tissue, IAENG Int. J. Comput. Sci. 35 (2008) 1-13.

Google Scholar

[22] P. Yuan, H. E. Liu, C. W. Chen, H. S. Kou, Temperature response in biological tissue by alternating heating and cooling modalities with sinusoidal temperature oscillation on the skin, Int. Commun. Heat Mass Transf. 35 (2008) 1091-1096.

DOI: 10.1016/j.icheatmasstransfer.2008.05.012

Google Scholar

[23] J. Okajima, S. Maruyama, H. Takeda, A. Komiya, Dimensionless solutions and general characteristics of bioheat transfer during thermal therapy, J. Therm. Biol. 34 (2009) 377-384.

DOI: 10.1016/j.jtherbio.2009.08.001

Google Scholar

[24] H. Ahmadikia, R. Fazlali, A. Moradi, Analytical solution of the parabolic and hyperbolic heat transfer equations with constant and transient heat flux conditions on skin tissue, Int. Commun. Heat Mass Transf. 39 (2012) 121-130.

DOI: 10.1016/j.icheatmasstransfer.2011.09.016

Google Scholar

[25] K. Das, S.C. Mishra, Estimation of tumor characteristics in a breast tissue with known skin surface temperature, J. Thermal Biol. 38 (2013) 311-317.

DOI: 10.1016/j.jtherbio.2013.04.001

Google Scholar

[26] R.C. Webb, A.P. Bonifas, A. Behnaz, Y.H. Zhang, K.J. Yu, Ultrathin conformal devices for precise and continuous thermal characterization of human skin, Nature Materials 12 (2013) 938–944.

DOI: 10.1038/nmat3755

Google Scholar

[27] H.-L. Lee, T.-H. Lai, W.-L. Chen, Y.-C. Yang, An inverse hyperbolic heat conduction problem in estimating surface heat flux of a living skin tissue, Appl. Math. Model. 37 (2013) 2630-2643.

DOI: 10.1016/j.apm.2012.06.025

Google Scholar

[28] R. C. Webb, R. M. Pielak, P. Bastien, J. Ayers, J. Niittynen, J. Kurniawan, M. Manco, A. Lin, N. H. Cho, V. M., G. Balooch, J. A. Rogers, Thermal transport characteristics of human skin measured in vivo using ultrathin conformal arrays of thermal sensors and Actuators, PLoS ONE 10(2), 2015, 1-17.

DOI: 10.1371/journal.pone.0118131

Google Scholar

[29] G.R. Ströher, G. L. Ströher, Numerical thermal analysis of skin tissue using parabolic and hyperbolic approaches, Int. Commun. Heat Mass Transf. 57 (2014) 193-199.

DOI: 10.1016/j.icheatmasstransfer.2014.07.026

Google Scholar

[30] G.C. Shit, A. Bera, Effect of thermal relaxation time on heat transfer in a two layer composite system of living tissues, Int. Commun. Heat Mass Transf. 61 (2015) 96-101.

DOI: 10.1016/j.icheatmasstransfer.2014.12.012

Google Scholar

[31] G.C. Shit, A. Bera, Temperature response in a living tissue with different heating source at the skin surface under relaxation time, Int. J. Appl. Comput. Math. 3(2) (2017) 381–394.

DOI: 10.1007/s40819-015-0120-0

Google Scholar