Heat Transfer in Plane with Temperature Dependent Thermal Variables

Article Preview

Abstract:

In this paper we consider heat transfer in a wall with temperature dependent heat conductivity and internal heat generation. It turns out the model considered is non-linear. We employ the classical Lie point symmetry analysis to determine the exact solutions. A number of cases for thermal conductivity and internal heat generation are considered. In some cases the exact solutions are not possible to construct. However, we first use the obtained exact solution as a bench mark for the quasilinear method. Since confidence is established, we then use the quasilinear method to solve some other applicable problem.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

23-36

Citation:

Online since:

September 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.Y. Lee and T.W. Tu, Unsteady temperature field in a slab with different kinds of time-dependent boundary conditions, Acta Mech. 226 (2015) 3597-3609.

DOI: 10.1007/s00707-015-1389-0

Google Scholar

[2] R.J. Moitsheki and O.D. Makinde, Classical Lie point symmetry analysis of non-linear diffusion equations describing thermal energy storage, Appl. Math. Comput. 216(1) (2010) 251-260.

DOI: 10.1016/j.amc.2010.01.046

Google Scholar

[3] R.P. Clark and N. Toy, Natural convection around the human head, J. Physiol. 244 (1974) 283- 293.

Google Scholar

[4] A. Aziz and O.D. Makinde, Analysis of entropy generation and thermal stability in a slab, J. Thermophysics and Heat Transfer, 24(2) (2010) 438-444.

DOI: 10.2514/1.45723

Google Scholar

[5] O.D. Makinde, Exothermic explosions in a slab: A case study of series summation technique. Int. Comm. Heat Mass Transf. 31(8) (2004) 1227-1231.

DOI: 10.1016/j.icheatmasstransfer.2004.08.020

Google Scholar

[6] O.D. Makinde, Hermite-Padé approach to thermal stability of reacting masses in a slab with asymmetric convective cooling, J. Franklin Institute, 349 (2012) 957-965.

DOI: 10.1016/j.jfranklin.2011.12.001

Google Scholar

[7] O.D. Makinde, On the thermal decomposition of reactive materials of variable thermal conductivity and heat loss characteristics in a long pipe. Journal of Energetic Materials, 30 (2012) 283-298.

DOI: 10.1080/07370652.2011.566598

Google Scholar

[8] S. Lebelo and O.D. Makinde, Modelling the impact of radiative heat loss on CO2 emission, O2 depletion and thermal stability in a reactive slab, Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 39(M2) (2015).

Google Scholar

[9] S. Lebelo and O.D. Makinde, Numerical investigation of CO2 emission and thermal stability of a convective and radiative stockpile of reactive material in a cylindrical pipe. Advances in Mechanical Engineering, 7(12) (2015) 1-11.

DOI: 10.1177/1687814015620323

Google Scholar

[10] P.L. Ndlovu and R.J. Moitsheki, Analytical Solutions for Steady Heat Transfer in Longitudinal Fins with Temperature-Dependent Properties, Mathematical Problems in Engineering. 2013 (2013) Article ID 273052, 14 pages.

DOI: 10.1155/2013/273052

Google Scholar

[11] T. Basak, S. Roy and I. Pop, Heat flow analysis for natural convection within enclosure trapezoidal based on heatline concept, International Journal of Heat and Mass Transfer. 52(11) (2009) 2471-2483.

DOI: 10.1016/j.ijheatmasstransfer.2009.01.020

Google Scholar

[12] R.J. Moitsheki, Transient heat diffusion with temperature-dependent conductivity and timedependent heat transfer coefficient, Mathematical Problems in Engineering. 2008 (2008) Article ID 347568, 9 pages.

DOI: 10.1155/2008/347568

Google Scholar

[13] O. di Stefano, S. Sammarco, and C. Spinelli, Lie Symmetry Analysis of An Unsteady Heat Conduction Problem, In Waves and Stability in Continuous Media. 1 (2010) 128-133.

DOI: 10.1142/9789814317429_0020

Google Scholar

[14] A.F. Mills, Basic heat and mass transfer, Irwin INC, Chicago, (1995).

Google Scholar

[15] P. Talukdar, 1D Steady state heat conduction (1), 13 & 17.

Google Scholar

[16] R.J. Moitsheki, Steady heat transfer through a radial fin with rectangular and hyperbolic profiles, Nonlinear Analysis: Real World Applications, 12(2) (2011) 867-874.

DOI: 10.1016/j.nonrwa.2010.08.011

Google Scholar

[17] G.W. Bluman and S.C. Anco, Symmetry and integration methods for differential equations, New York: Springer-Verlag, (2002).

Google Scholar

[18] G.W. Bluman, A.F. Cheviakov and S.C. Anco, Applications of symmetry methods to partial differential equations, New York: Springer-verlag, (2010).

DOI: 10.1007/978-0-387-68028-6

Google Scholar

[19] N.H. Ibragimov, Elementary Lie group analysis and ordinary differential equations, Wiley, (1998).

Google Scholar

[20] P. J. Olver, Applications of Lie groups to differential equations, Springer, New York, (1986).

Google Scholar

[21] S. Lie, Klassifikation und integration von gew¨onlichen Differentialgleichugen zwischen x, y die eine Gruppe von transformationen gestaten, Archiv der Mathematik, VIII, IX: 187, 1883.

DOI: 10.1007/bf01444068

Google Scholar

[22] N.M. Ivanova and C. Sophocleous, On group classification of variable-coefficient nonlinear diffusion-convection equations, J. Compt. Appl. Math. 197(2) (2006) 322-344.

DOI: 10.1016/j.cam.2005.11.008

Google Scholar

[23] N.H. Ibragimov, M. Torrisi and A. Valenti, Preliminary group classification of equations vtt = f(x, vx)vxx + g(x, vx), J. Math. Phys. 32(11) (1991) 2988-2995.

DOI: 10.1016/s1007-5704(03)00016-9

Google Scholar

[24] O.O. Vaneeva, A.G. Johnpillai, R.O. Popovych and C. Sophocleous, Enhanced group analysis and conservation laws of variable coefficient reaction-diffusion equations with power nonlinearities, J. Math. Anal. Appl. 330(2) (2007) 1363-1386.

DOI: 10.1016/j.jmaa.2006.08.056

Google Scholar

[25] R.J. Moitsheki, T. Hayat, M.Y. Malik, Some exact solutions of the fin problem with a power law temperature-dependent thermal conductivity, Nonlin. Anal.: RWA, 11(5) (2010) 3287-3294.

DOI: 10.1016/j.nonrwa.2009.11.021

Google Scholar

[26] F.M. Mahomed, Symmetry group classification of ordinary differential equations: Survey of some results, Math. Meth. Appl. Sci. 30 (2007) 1995-(2012).

DOI: 10.1002/mma.934

Google Scholar