[1]
S.Y. Lee and T.W. Tu, Unsteady temperature field in a slab with different kinds of time-dependent boundary conditions, Acta Mech. 226 (2015) 3597-3609.
DOI: 10.1007/s00707-015-1389-0
Google Scholar
[2]
R.J. Moitsheki and O.D. Makinde, Classical Lie point symmetry analysis of non-linear diffusion equations describing thermal energy storage, Appl. Math. Comput. 216(1) (2010) 251-260.
DOI: 10.1016/j.amc.2010.01.046
Google Scholar
[3]
R.P. Clark and N. Toy, Natural convection around the human head, J. Physiol. 244 (1974) 283- 293.
Google Scholar
[4]
A. Aziz and O.D. Makinde, Analysis of entropy generation and thermal stability in a slab, J. Thermophysics and Heat Transfer, 24(2) (2010) 438-444.
DOI: 10.2514/1.45723
Google Scholar
[5]
O.D. Makinde, Exothermic explosions in a slab: A case study of series summation technique. Int. Comm. Heat Mass Transf. 31(8) (2004) 1227-1231.
DOI: 10.1016/j.icheatmasstransfer.2004.08.020
Google Scholar
[6]
O.D. Makinde, Hermite-Padé approach to thermal stability of reacting masses in a slab with asymmetric convective cooling, J. Franklin Institute, 349 (2012) 957-965.
DOI: 10.1016/j.jfranklin.2011.12.001
Google Scholar
[7]
O.D. Makinde, On the thermal decomposition of reactive materials of variable thermal conductivity and heat loss characteristics in a long pipe. Journal of Energetic Materials, 30 (2012) 283-298.
DOI: 10.1080/07370652.2011.566598
Google Scholar
[8]
S. Lebelo and O.D. Makinde, Modelling the impact of radiative heat loss on CO2 emission, O2 depletion and thermal stability in a reactive slab, Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 39(M2) (2015).
Google Scholar
[9]
S. Lebelo and O.D. Makinde, Numerical investigation of CO2 emission and thermal stability of a convective and radiative stockpile of reactive material in a cylindrical pipe. Advances in Mechanical Engineering, 7(12) (2015) 1-11.
DOI: 10.1177/1687814015620323
Google Scholar
[10]
P.L. Ndlovu and R.J. Moitsheki, Analytical Solutions for Steady Heat Transfer in Longitudinal Fins with Temperature-Dependent Properties, Mathematical Problems in Engineering. 2013 (2013) Article ID 273052, 14 pages.
DOI: 10.1155/2013/273052
Google Scholar
[11]
T. Basak, S. Roy and I. Pop, Heat flow analysis for natural convection within enclosure trapezoidal based on heatline concept, International Journal of Heat and Mass Transfer. 52(11) (2009) 2471-2483.
DOI: 10.1016/j.ijheatmasstransfer.2009.01.020
Google Scholar
[12]
R.J. Moitsheki, Transient heat diffusion with temperature-dependent conductivity and timedependent heat transfer coefficient, Mathematical Problems in Engineering. 2008 (2008) Article ID 347568, 9 pages.
DOI: 10.1155/2008/347568
Google Scholar
[13]
O. di Stefano, S. Sammarco, and C. Spinelli, Lie Symmetry Analysis of An Unsteady Heat Conduction Problem, In Waves and Stability in Continuous Media. 1 (2010) 128-133.
DOI: 10.1142/9789814317429_0020
Google Scholar
[14]
A.F. Mills, Basic heat and mass transfer, Irwin INC, Chicago, (1995).
Google Scholar
[15]
P. Talukdar, 1D Steady state heat conduction (1), 13 & 17.
Google Scholar
[16]
R.J. Moitsheki, Steady heat transfer through a radial fin with rectangular and hyperbolic profiles, Nonlinear Analysis: Real World Applications, 12(2) (2011) 867-874.
DOI: 10.1016/j.nonrwa.2010.08.011
Google Scholar
[17]
G.W. Bluman and S.C. Anco, Symmetry and integration methods for differential equations, New York: Springer-Verlag, (2002).
Google Scholar
[18]
G.W. Bluman, A.F. Cheviakov and S.C. Anco, Applications of symmetry methods to partial differential equations, New York: Springer-verlag, (2010).
DOI: 10.1007/978-0-387-68028-6
Google Scholar
[19]
N.H. Ibragimov, Elementary Lie group analysis and ordinary differential equations, Wiley, (1998).
Google Scholar
[20]
P. J. Olver, Applications of Lie groups to differential equations, Springer, New York, (1986).
Google Scholar
[21]
S. Lie, Klassifikation und integration von gew¨onlichen Differentialgleichugen zwischen x, y die eine Gruppe von transformationen gestaten, Archiv der Mathematik, VIII, IX: 187, 1883.
DOI: 10.1007/bf01444068
Google Scholar
[22]
N.M. Ivanova and C. Sophocleous, On group classification of variable-coefficient nonlinear diffusion-convection equations, J. Compt. Appl. Math. 197(2) (2006) 322-344.
DOI: 10.1016/j.cam.2005.11.008
Google Scholar
[23]
N.H. Ibragimov, M. Torrisi and A. Valenti, Preliminary group classification of equations vtt = f(x, vx)vxx + g(x, vx), J. Math. Phys. 32(11) (1991) 2988-2995.
DOI: 10.1016/s1007-5704(03)00016-9
Google Scholar
[24]
O.O. Vaneeva, A.G. Johnpillai, R.O. Popovych and C. Sophocleous, Enhanced group analysis and conservation laws of variable coefficient reaction-diffusion equations with power nonlinearities, J. Math. Anal. Appl. 330(2) (2007) 1363-1386.
DOI: 10.1016/j.jmaa.2006.08.056
Google Scholar
[25]
R.J. Moitsheki, T. Hayat, M.Y. Malik, Some exact solutions of the fin problem with a power law temperature-dependent thermal conductivity, Nonlin. Anal.: RWA, 11(5) (2010) 3287-3294.
DOI: 10.1016/j.nonrwa.2009.11.021
Google Scholar
[26]
F.M. Mahomed, Symmetry group classification of ordinary differential equations: Survey of some results, Math. Meth. Appl. Sci. 30 (2007) 1995-(2012).
DOI: 10.1002/mma.934
Google Scholar