MHD Stagnation Point Flow of Viscoelastic Nanofluid Past a Convectively Heated Stretching Surface

Article Preview

Abstract:

A mathematical model is established to examine the influence of viscous dissipation and joule heating on magnetohydrodynamic (MHD) flow of an incompressible viscoelastic nanofluid over a convectively heated stretching sheet. Brownian motion and thermophoresis effects have been introduced in this nanofluid model. The governing equations are transformed into ODE’s by using suitable similarity conversions and are then solved numerically by the most robust shooting technique. The significance of numerous physical flow constraints is performed for, and distributions through graphs. It is noticed that, the increases for higher values of and reduces for rising values of heat source and Biot numbers. An outstanding contract was found between our numerical results and previously publicised results.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

106-120

Citation:

Online since:

September 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Mabood, W.A. Khan, A.I. M Ismail, The MHD boundary layer flow and heat transfer of nanofluids over a nonlinear stretching sheet, J. magnet. Magn. Mater. 374 (2015) 569–576.

DOI: 10.1016/j.jmmm.2014.09.013

Google Scholar

[2] M. Wahiduzzaman, S. Khan, P. Biswas, I. Karim, M.S. Uddin, Viscous dissipation and radiation effects on MHD boundary layer flow of a nanofluid past a rotating stretching sheet, Appl. Math. 6 (2015) 547–567.

DOI: 10.4236/am.2015.63050

Google Scholar

[3] R. Ahmad, M. Mustafa, T. Hayat, A. Alsaed, Numerical study of MHD nanofluid flow and heat transfer past a bidirectional exponentially stretching sheet, J. Magnet. Magn mater 407 (2016) 69–74.

DOI: 10.1016/j.jmmm.2016.01.038

Google Scholar

[4] P.V. Satya Narayana, B. Venkateswarlu, Heat and mass transfer on MHD nanofluid flow past a vertical porous plate in a rotating system, Frontiers Heat Mass Transfer 7 (8) (2016) 1-10.

DOI: 10.5098/hmt.7.8

Google Scholar

[5] S. Nadeem, R. U. Haq, Effect of thermal radiation for MHD boundary layer flow of a nanofluid past a stretching sheet with convective boundary conditions, J. Comp. Theoretical Nanoscience 11 (1) (2014) 32–40.

DOI: 10.1166/jctn.2014.3313

Google Scholar

[6] K. Bhattacharyya, G.C. Layek, MHD Boundary layer flow of nanofluid over an exponentially stretching permeable sheet, Phys. Res. Int (2014) 1–12.

DOI: 10.1155/2014/592536

Google Scholar

[7] G.S. Seth, M.K. Mishra, Analysis of transient flow of MHD nanofluid past a non-Linear stretching sheet considering Navier's slip boundary condition, Adv. Pow. Tech. 28 (2) (2017) 375–384.

DOI: 10.1016/j.apt.2016.10.008

Google Scholar

[8] O. D. Makinde, W. A. Khan, Z. H. Khan, Buoyancy effects on MHD stagnation point flow and heat transfer of a nanofluid past a convectively heated stretching/shrinking sheet.International Journal of Heat and Mass Transfer 62 (2013) 526-533.

DOI: 10.1016/j.ijheatmasstransfer.2013.03.049

Google Scholar

[9] O. D. Makinde, W. A. Khan, A. Aziz, on Inherent irreversibility in Sakiadis flow of nanofluids. International Journal of Exergy, 13(2) (2013) 159-174.

DOI: 10.1504/ijex.2013.056131

Google Scholar

[10] O. D. Makinde, Computational modelling of nanofluids flow over a convectively heated unsteady stretching sheet. Current Nanoscience, 9 (2013) 673-678.

DOI: 10.2174/15734137113099990068

Google Scholar

[11] O. D. Makinde, Effects of viscous dissipation and Newtonian heating on boundary layer flow of nanofluids over a flat plate. International Journal of Numerical Methods for Heat and Fluid flow, 23(8) (2013) 1291-1303.

DOI: 10.1108/hff-12-2011-0258

Google Scholar

[12] W. Ibrahim, O.D. Makinde, Magnetohydrodynamic stagnation point flow of a power-law nanofluid towards a convectively heated stretching sheet with slip. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 230(5) (2016).

DOI: 10.1177/0954408914550357

Google Scholar

[13] O.D. Makinde, F. Mabood, W.A. Khan, M.S. Tshehla, MHD flow of a variable viscosity nanofluid over a radially stretching convective surface with radiative heat. Journal of Molecular Liquids, 219 (2016) 624-630.

DOI: 10.1016/j.molliq.2016.03.078

Google Scholar

[14] N. S. Akbar, S. Nadeem, R. Ul Haq, Z.H. Khan, Radiation effects on MHD stagnation point flow of nanofluid towards a stretching surface with convective boundary condition, Chinese J. Aeronaut. 26 (6) (2013) 1389–1397.

DOI: 10.1016/j.cja.2013.10.008

Google Scholar

[15] S. K. Nandy, T. R. Mahapatra, Effects of slip and heat generation/sbsorption on MHD stagnation flow of nanofluid past a stretching/shrinking surface with convective boundary conditions, Int. J. Heat Mass Transfer 64 (2013) 1091–1100.

DOI: 10.1016/j.ijheatmasstransfer.2013.05.040

Google Scholar

[16] U. Khan, N. Ahmed, S. Irfan, U. Khan, S. T. Mohyuddin, Thermo-Diffusion effects on MHD stagnation point flow towards a stretching sheet in a nanofluid, Prop. Power Res. 3 (3) (2014) 151–158.

DOI: 10.1016/j.jppr.2014.07.006

Google Scholar

[17] W. Ibrahim, Nonlinear radiative heat transfer in MHD stagnation point flow of nanofluid past a stretching sheet with convective boundary condition, Prop. Power Res. 4 (2015) 230–239.

DOI: 10.1016/j.jppr.2015.07.007

Google Scholar

[18] W. Ibrahimn, The effect of induced magnetic field and convective boundary condition on MHD stagnation point flow and heat transfer of upper-convected Maxwell fluid in the presence of nanoparticle past a stretching sheet, Propulsion Power Res. 5 (2) (2016).

DOI: 10.1016/j.jppr.2016.05.003

Google Scholar

[19] T. Hayat, M. Imtiaz, A. Alsaedi, MHD stagnation point flow of a Jeffrey nanofluid with Newtonian heating, J. Aerospace Eng 29 (3) (2015) 1–9.

DOI: 10.1061/(asce)as.1943-5525.0000568

Google Scholar

[20] P. V. Satya Narayana, D. Harish Babu, Numerical study of MHD heat and mass transfer of a Jeffrey fluid over a stretching sheet with chemical reaction and thermal radiation, J. Taiwan Inst. Chem. Eng. 59 (2016) 18–25.

DOI: 10.1016/j.jtice.2015.07.014

Google Scholar

[21] S.U. Mamatha, Mahesha, C.S.K. Raju, O.D. Makinde, Effect of convective boundary conditions on MHD Carreau dusty fluid over a stretching sheet with heat source. Defect and Diffusion Forum, 377 (2017) 233-241, (2017).

DOI: 10.4028/www.scientific.net/ddf.377.233

Google Scholar

[22] R. P. Sharma, K. Avinash, N. Sandeep, O.D. Makinde, Thermal radiation effect on non-Newtonian fluid flow over a stretched sheet of non-uniform thickness. Defect and Diffusion Forum, 377 (2017) 242-259.

DOI: 10.4028/www.scientific.net/ddf.377.242

Google Scholar

[23] P. M. Krishna, N. Sandeep, R. P. Sharma, O.D. Makinde, Thermal radiation effect on 3D slip motion of AlCu-Water and Cu-Water nanofluids over a variable thickness stretched surface. Defect and Diffusion Forum, 377 (2017) 141-154.

DOI: 10.4028/www.scientific.net/ddf.377.141

Google Scholar

[24] G. Sreedevi, D. R. V. Prasada Rao, O. D. Makinde, G. V. Ramana Reddy, Soret and Dufour effects on MHD flow with heat and mass transfer past a permeable stretching sheet in presence of thermal radiation. Indian Journal of Pure & Applied Physics, 55 (8) (2017).

DOI: 10.1002/htj.21723

Google Scholar

[25] M. Goyal, R. Bhargava, Numerical solution of MHD viscoelastic nanofluid flow over a stretching sheet with partial slip and heat source/sink, ISRN Nano Tech. (2013) 1–11.

DOI: 10.1155/2013/931021

Google Scholar

[26] G.C. Shit, R. Haldar, S.K. Ghosh, Convective heat transfer and MHD viscoelastic nanofluid flow induced by a stretching sheet, Int. J. Appl. Comp. Math. 2 (4) (2016) 593–608.

DOI: 10.1007/s40819-015-0080-4

Google Scholar

[27] M. Farooq, M. Ijaz Khan, M. Waquas, T. Hayat, A. Alsaedi, M. Imran Khan, The MHD Stagnation point flow of viscoelastic nanofluid with non-linear radiation effects, J. Mol. Liquid 221 (2016) 1097–103.

DOI: 10.1016/j.molliq.2016.06.077

Google Scholar

[28] P. Kiran, Nonlinear thermal convection in a viscoelastic nanofluid saturated porous medium under gravity modulation, Ain Shams Eng. J. 7 (2016) 639–651.

DOI: 10.1016/j.asej.2015.06.005

Google Scholar

[29] T. Hayat, M.Waqus, S.A. Shehzad, A. Alsedi, Mixed convection flow of viscoelastic nanofluid by a cylinder with variable thermal conductivity and heat source/sink, Int. J. Num. Meth. Heat Fluid Flow 26 (2016) 214–234.

DOI: 10.1108/hff-02-2015-0053

Google Scholar

[30] M. Ramzan , S. Inam, S.A. Shehzad, Three dimensional boundary layer flow of a viscoelastic nanofluid with soret and dufour effect, Alexandria Eng. J. 55 (1) (2016) 311–319.

DOI: 10.1016/j.aej.2015.09.012

Google Scholar

[31] W.A. Khan, O.D. Makinde and Z.H. Khan, Non-aligned MHD stagnation point flow of variable viscosity nanofluids past a stretching sheet with radiative heat, Int. J. Heat Mass Transfer 96 (2016) 525–534.

DOI: 10.1016/j.ijheatmasstransfer.2016.01.052

Google Scholar

[32] P.V. Satya Narayana, B. Venkateswarlu, B. Devika, Chemical reaction and heat source effects on MHD oscillatory flow in an irregular channel, Ain Shams Eng. J. 7 (2016) 1079–1088.

DOI: 10.1016/j.asej.2015.07.012

Google Scholar

[33] Ibraheem Nasser, H. M. Duwairi, Thermal dispersion effects on convection heat transfer in porous media with viscous dissipation, Int. J. Heat Tech. 34 (2) (2016) 207-212.

DOI: 10.18280/ijht.340208

Google Scholar

[34] A. Hussain, M. Y. Malika, T. Salahuddinb, S. Bilal, M. Awais, Combined effects of viscous dissipation and joule heating on MHD Sisko nanofluid over a stretching cylinder. J. Mol. Liquid 231 (2017) 341–352.

DOI: 10.1016/j.molliq.2017.02.030

Google Scholar

[35] P. Besthapu, R. Ul Haq, S. Bandari, Q. M. Al-Mdallal, Mixed convection flow of thermally stratified MHD nanofluid over an exponentially stretching surface with viscous dissipation effect, J. Taiwan Inst. Chem. Eng. 71 (2017) 307–314.

DOI: 10.1016/j.jtice.2016.12.034

Google Scholar

[36] T. Hayat, M. I. Khan, M. Waqas, T.Yasmeen, A. Alsaedi, Viscous issipation effect in flow of magnetonanofluid with variable properties, J. Mol. Liquid 222 (2016) 47–54.

DOI: 10.1016/j.molliq.2016.06.096

Google Scholar

[37] Y. Bai, X. Liu, Y. Zhang, M. Zhang, Stagnation-point heat and mass transfer of MHD maxwell nanofluids over a stretching surface in the presence of thermophoresis, J. Mol. Liquid 224 (2016) 1172–1180.

DOI: 10.1016/j.molliq.2016.10.082

Google Scholar

[38] W.A. Khan, I. Pop, boundary-layer flow of a nanofluid past a stretching sheet, Int. J. Heat Mass Transfer 53 (2010) 2477-2483.

DOI: 10.1016/j.ijheatmasstransfer.2010.01.032

Google Scholar

[39] R.S.R. Gorla, I. Sidawi, Free convection on a vertical stretching surface with suction and blowing, Appl. Sci. Res. 52 (1994) 247–257.

DOI: 10.1007/bf00853952

Google Scholar

[40] P. V. Satya Narayana, Nainaru Tarakaramu, S. Moliya Akshit, Jatin P. Ghori, MHD flow and Heat Transfer of an Eyring - Powell Fluid over a Linear Stretching Sheet With Viscous Dissipation - A Numerical Study, Frontiers Heat Mass Transfer 9 9 (2017).

DOI: 10.5098/hmt.9.9

Google Scholar

[41] Nainaru Tarakaramu, P. V. Satya Narayan, Unsteady MHD nanofluid flow over a stretching sheet with chemical reaction, IOP Conf. Series: Mater. Science Eng. 263 (2017) 1-8.

DOI: 10.1088/1757-899x/263/6/062030

Google Scholar

[42] P.V. Satya Narayana, S.M. Akshit, J.P. Ghori and B. Venkateswarlu, Thermal radiation effects on an unsteady MHD nanofluid flow over a stretching sheet with non-uniform heat source/sink. J. Nanofluids, 8 (2017) 1-5.

DOI: 10.1166/jon.2017.1374

Google Scholar