Impact of Lorentz Force on Unsteady Bio Convective Flow of Carreau Fluid across a Variable Thickness Sheet with Non-Fourier Heat Flux Model

Article Preview

Abstract:

In this article, we examined the magnetohydrodynamic Cattaneo-Christov bio convective flow of Carreau liquid over a variable thickness sheet with irregular heat sink/source. The fluid motion is supposed to be time dependent and not turbulent. Firstly, proper transmutations are pondered to metamorphose the basic flow equations as ODE. The solution of these ODEs is procured by the sequential execution of R.K. and Shooting numerical treatments. The density of motile organisms, concentration, temperature and velocity distributions for dissimilar values of non-dimensional parameters are perused via graphs. Further, we analyzed the impact of same parameters on friction factor, local Nusselt number and the rate of mass transfer coefficients and presented in table. Results indicate that the distribution of the density of motile organisms is an increasing function of Peclet and Lewis numbers. Fluid velocity is proportional to the Weissenberg number. Also the space dependent heat sink/source parameters perform obligatory role in the mass and heat transport performance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

474-497

Citation:

Online since:

September 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Massoudi, I. Christie, Effects of variable viscosity and viscous dissipation on the flow of a third grade fluid in a pipe, Int. J. Non-linear Mech. 30 (1995) 681-699.

DOI: 10.1016/0020-7462(95)00031-i

Google Scholar

[2] A. M. Siddiqui, R. Mahmood, Q. K. Ghori, Homotopy perturbation method for thin film flow of a third grade fluid down an inclined plane, Chaos Solit. Fract. 35 (2008) 140-147.

DOI: 10.1016/j.chaos.2006.05.026

Google Scholar

[3] S. Mukhopadhyay, K. Bhattacharyya, Unsteady flow of a Maxwell fluid over a stretching surface in the presence of chemical reaction, J. Egypt. Math. Soc. 20 (2012) 229-234.

DOI: 10.1016/j.joems.2012.08.019

Google Scholar

[4] N. S. Akbar, S. Nadeem, R. U. Haq, S. Ye, MHD stagnation point flow of Carreau fluid towards a permeable shrinking sheet: Dual solutions, Ain Shams Eng. J. 5 (2014) 1233-1239.

DOI: 10.1016/j.asej.2014.05.006

Google Scholar

[5] M. Khan, Hashim, Boundary layer flow and heat transfer to Carreau fluid over a nonlinear stretching sheet, AIP Adv. 5 (2015) Article Id: 107203.

DOI: 10.1063/1.4932627

Google Scholar

[6] N. M. Arifin, S. N. Yusof, N. S. Ismail, Slip effects on MHD stagnation-point flow of Carreau fluid past a permeable shrinking sheet, Int. J. Sci. Tech. 3 (2017) 525-532.

DOI: 10.20319/mijst.2017.32.525532

Google Scholar

[7] C. Cattaneo, Sulla conduzionedelcalore, AttiSemin. Mat. Fis. Univ. Modena Reggio Emilia 3 (1948) 83-101.

Google Scholar

[8] C. I. Christov, On frame indifferent formulation of the Maxwell-Cattaneo model of finite speed heat conduction, Mech. Res. Comm. 36 (2009) 481-486.

DOI: 10.1016/j.mechrescom.2008.11.003

Google Scholar

[9] S. Han, L. Zheng, C. Li, X. Zhang, Coupled flow and heat transfer in viscoelastic fluid with Cattaneo-Christov heat flux model, Appl. Math. Lett. 38, (2014) 87-93.

DOI: 10.1016/j.aml.2014.07.013

Google Scholar

[10] T. Hayat, S. Qayyum, M. Imtiaz, A. Alsaedi, Three-dimensional rotating flow of Jeffrey fluid for Cattaneo-Christov heat flux model, AIP Adv. 6 (2016) Article Id: 025012.

DOI: 10.1063/1.4942091

Google Scholar

[11] K. A. Kumar, J. V. R. Reddy, V. Sugunamma, N. Sandeep, Magnetohydrodynamic Cattaneo-Christov flow past a cone and a wedge with variable heat source/sink, Alex. Eng. J. 57 (2018) 435-443.

DOI: 10.1016/j.aej.2016.11.013

Google Scholar

[12] J. V. R. Reddy, V. Sugunamma, N. Sandeep, Cross diffusion effects on MHD flow over three different geometries with Cattaneo-Christov heat flux, J. Mol. Liq. 223 (2016) 1234-1241.

DOI: 10.1016/j.molliq.2016.09.047

Google Scholar

[13] S. U. Mamatha, Mahesha, C.S.K. Raju, Cattaneo-Christov on heat and mass transfer of unsteady Eyring Powell dusty nanofluid over sheet with heat and mass flux conditions, Inf. Med. Unlock. 9 (2017) 76-85.

DOI: 10.1016/j.imu.2017.06.001

Google Scholar

[14] C. K. Chen, M. I. Char, Heat transfer of a continuous, stretching surface with suction or blowing, J. Math. Anal. Appl. 135 (1988) 568-580.

DOI: 10.1016/0022-247x(88)90172-2

Google Scholar

[15] P. G. Siddheshwar, U. S. Mahabaleswar, Effect of radiation and heat source on MHD flow of a viscoelastic liquid and heat transfer over a stretching sheet, Int. J. Non-linear Mech. 40 (2005) 807-820.

DOI: 10.1016/j.ijnonlinmec.2004.04.006

Google Scholar

[16] K. Vajravelu, Viscous flow over a nonlinearly stretching sheet, Appl. Math. Comp. 124 (2001) 281-288.

DOI: 10.1016/s0096-3003(00)00062-x

Google Scholar

[17] S. Nadeem, R. U. Haq, C. Lee, MHD flow of a Casson fluid over an exponentially shrinking surface, Sci. Iran. B 12 (2012) 1550-1553.

DOI: 10.1016/j.scient.2012.10.021

Google Scholar

[18] P. Rana, R. Bhargava, Flow and heat transfer of a nanofluid over a nonlinearly stretching sheet: A numerical study, Comm. Nonlinear Sci. Num. Simul. 17 (2012) 212-226.

DOI: 10.1016/j.cnsns.2011.05.009

Google Scholar

[19] F. Mabood, W. A. Khan, A. I. M. Ismail, MHD boundary layer flow and heat transfer of nanofluids over a nonlinear stretching sheet: A numerical study, J. Magn. Magn. Mate. 374 (2015) 569-576.

DOI: 10.1016/j.jmmm.2014.09.013

Google Scholar

[20] M. Mustafa, J. A. Khan, T. Hayat, A. Alsaedi, Analytical and numerical solutions for axisymmetric flow of nanofluid due to non-linearly stretching sheet, Int. J. Non-linear Mech. 71 (2015) 22-29.

DOI: 10.1016/j.ijnonlinmec.2015.01.005

Google Scholar

[21] N. S. Akbar, A. Ebaid, Z.H. Khan, Numerical analysis of magnetic field effects on Eyring-Powell fluid flow towards a stretching sheet, J. Mag. Mag. Mater. 382 (2015) 355-358.

DOI: 10.1016/j.jmmm.2015.01.088

Google Scholar

[22] N. Sandeep, I.L. Animasaun, Heat transfer in wall jet flow of magnetic-nanofluids with variable magnetic field, Alex. Eng. J. 56 (2017) 263-269.

DOI: 10.1016/j.aej.2016.12.019

Google Scholar

[23] L. Zheng, L. Wang, X. Zhang, Analytic solutions of unsteady boundary layer flow and heat transfer on a permeable stretching sheet with non-uniform heat source/sink Commun. Nonlinear Sci. Numer. Simulat. 16 (2011) 731-740.

DOI: 10.1016/j.cnsns.2010.05.022

Google Scholar

[24] J. V. R. Reddy, V. Sugunamma, N. Sandeep, K. A. Kumar, Influence of non-uniform heat source/sink on MHD nanofluid flow past a slendering stretching sheet with slip effects, Global J. Pure Appl. Math. 12 (2016) 247-254.

DOI: 10.1615/computthermalscien.2020027016

Google Scholar

[25] B. Ramandevi, J. V. R. Reddy, V. Sugunamma, N. Sandeep, Combined influence of viscous dissipation and non-uniform heat source/sink on MHD non-Newtonian fluid flow with Cattaneo-Christov heat flux, Alex. Eng. J. (2017).

DOI: 10.1016/j.aej.2017.01.026

Google Scholar

[26] M. J. Babu, N. Sandeep, C.S.K. Raju, Heat and mass transfer in MHD Eyring-Powell nanofluid flow due to cone in porous medium, Int. J. Eng. Res. Africa 19 (2016) 57-74.

DOI: 10.4028/www.scientific.net/jera.19.57

Google Scholar

[27] C. Sulochana, G.P.A. Kumar, N. Sandeep, Transpiration effect on stagnation-point flow of a Carreau nanofluid in the presence of thermophoresis and Brownian motion, Alex. Eng. J. 55 (2016) 1151-1157.

DOI: 10.1016/j.aej.2016.03.031

Google Scholar

[28] M. J. Babu, N. Sandeep, MHD non-Newtonian fluid flow over a slendering stretching sheet in the presence of cross-diffusion effects, Alex. Eng. J. 55 (2016) 2193-2201.

DOI: 10.1016/j.aej.2016.06.009

Google Scholar

[29] J. V. R. Reddy, K. A. Kumar, V. Sugunamma, N. Sandeep, Effect of cross diffusion on MHD non-Newtonian fluids flow past a stretching sheet with non-uniform heat source/sink: A comparative study, Alex. Eng. J. (2017).

DOI: 10.1016/j.aej.2017.03.008

Google Scholar

[30] C. Sulochana, G. P. A. Kumar, N. Sandeep, Effect of frictional heating on mixed convection flow of chemically reacting radiative Casson nanofluid over an inclined porous plate, Alex. Eng. J. http://dx.doi.org/10.1016/j.aej.2017.08.006.

DOI: 10.1016/j.aej.2017.08.006

Google Scholar

[31] C. S. K. Raju, N. Sandeep, Dual solutions for unsteady heat and mass transfer in Bio-convection flow towards a rotating cone/plate in a rotating fluid, Int. J. Eng. Res. in Africa 20 (2015) 161-176.

DOI: 10.4028/www.scientific.net/jera.20.161

Google Scholar

[32] C. S. K. Raju, N. Sandeep, Heat and mass transfer in MHD non-Newtonian bio-convection flow over a rotating cone/plate with cross diffusion, J. Mol. Liq. 215 (2016) 115-126.

DOI: 10.1016/j.molliq.2015.12.058

Google Scholar

[33] M. Ramzan, J. D. Chung, N. Ullah, Radiative magnetohydrodynamic nanofluid flow due to gyrotactic microorganisms with chemical reaction and non-linear thermal radiation, Int. J. Mech. Sci. https://doi.org/10.1016/j.ijmecsci.2017.06.009.

DOI: 10.1016/j.ijmecsci.2017.06.009

Google Scholar

[34] C. S. K. Raju, N. Sandeep, A comparative study on heat and mass transfer of the Blasius and Falkner-Skan flow flow of a bio-convective Casson fluid past a wedge, Eur. Phys. J. Plus 131 (2016).

DOI: 10.1140/epjp/i2016-16405-y

Google Scholar

[35] W. N. Mutuku, O. D. Makinde, Hydromagnetic bio convection of nanofluid over a permeable vertical plate due to gyrotactic microorganisms. Comp. Fluids, 95 (2014) 88–97.

DOI: 10.1016/j.compfluid.2014.02.026

Google Scholar

[36] W. A. Khan, O. D. Makinde, Z. H. Khan, MHD boundary layer flow of a nanofluid containing gyrotactic microorganisms past a vertical plate with Navier slip, Int. J. Heat Mass Transf. 74 (2014) 285–291.

DOI: 10.1016/j.ijheatmasstransfer.2014.03.026

Google Scholar

[37] W. A. Khan, O. D. Makinde, MHD nanofluid bioconvection due to gyrotactic microorganisms over a convectively heat stretching sheet, Int. J. Therm. Sci. 81 (2014) 118-124.

DOI: 10.1016/j.ijthermalsci.2014.03.009

Google Scholar

[38] O. D. Makinde, I. L. Animasaun, Bio convection in MHD nanofluid flow with nonlinear thermal radiation and quartic autocatalysis chemical reaction past an upper surface of a paraboloid of revolution. , Int. J. Therm. Sci. 109 (2016) 159-171.

DOI: 10.1016/j.ijthermalsci.2016.06.003

Google Scholar

[39] O. D. Makinde, I. L. Animasaun, Thermophoresis and Brownian motion effects on MHD bioconvection of nanofluid with nonlinear thermal radiation and quartic chemical reaction past an upper horizontal surface of a paraboloid of revolution, J. Mol. Liq. 221 (2016).

DOI: 10.1016/j.molliq.2016.06.047

Google Scholar

[40] O. D. Makinde, N. Sandeep, I. L.Animasaun, M. S. Tshehla, Numerical exploration of Cattaneo-Christov heat flux and mass transfer in magnetohydrodynamic flow over various geometries, Defect Diff. Forum, 374 (2017) 67-82.

DOI: 10.4028/www.scientific.net/ddf.374.67

Google Scholar

[41] K. Avinash, N. Sandeep, O. D. Makinde, I.L. Animasaun, Aligned magnetic field effect on radiative bioconvection flow past a vertical plate with thermophoresis and Brownian motion, Defect Diff. Forum, 377 (2017) 127-140.

DOI: 10.4028/www.scientific.net/ddf.377.127

Google Scholar