[1]
M. Massoudi, I. Christie, Effects of variable viscosity and viscous dissipation on the flow of a third grade fluid in a pipe, Int. J. Non-linear Mech. 30 (1995) 681-699.
DOI: 10.1016/0020-7462(95)00031-i
Google Scholar
[2]
A. M. Siddiqui, R. Mahmood, Q. K. Ghori, Homotopy perturbation method for thin film flow of a third grade fluid down an inclined plane, Chaos Solit. Fract. 35 (2008) 140-147.
DOI: 10.1016/j.chaos.2006.05.026
Google Scholar
[3]
S. Mukhopadhyay, K. Bhattacharyya, Unsteady flow of a Maxwell fluid over a stretching surface in the presence of chemical reaction, J. Egypt. Math. Soc. 20 (2012) 229-234.
DOI: 10.1016/j.joems.2012.08.019
Google Scholar
[4]
N. S. Akbar, S. Nadeem, R. U. Haq, S. Ye, MHD stagnation point flow of Carreau fluid towards a permeable shrinking sheet: Dual solutions, Ain Shams Eng. J. 5 (2014) 1233-1239.
DOI: 10.1016/j.asej.2014.05.006
Google Scholar
[5]
M. Khan, Hashim, Boundary layer flow and heat transfer to Carreau fluid over a nonlinear stretching sheet, AIP Adv. 5 (2015) Article Id: 107203.
DOI: 10.1063/1.4932627
Google Scholar
[6]
N. M. Arifin, S. N. Yusof, N. S. Ismail, Slip effects on MHD stagnation-point flow of Carreau fluid past a permeable shrinking sheet, Int. J. Sci. Tech. 3 (2017) 525-532.
DOI: 10.20319/mijst.2017.32.525532
Google Scholar
[7]
C. Cattaneo, Sulla conduzionedelcalore, AttiSemin. Mat. Fis. Univ. Modena Reggio Emilia 3 (1948) 83-101.
Google Scholar
[8]
C. I. Christov, On frame indifferent formulation of the Maxwell-Cattaneo model of finite speed heat conduction, Mech. Res. Comm. 36 (2009) 481-486.
DOI: 10.1016/j.mechrescom.2008.11.003
Google Scholar
[9]
S. Han, L. Zheng, C. Li, X. Zhang, Coupled flow and heat transfer in viscoelastic fluid with Cattaneo-Christov heat flux model, Appl. Math. Lett. 38, (2014) 87-93.
DOI: 10.1016/j.aml.2014.07.013
Google Scholar
[10]
T. Hayat, S. Qayyum, M. Imtiaz, A. Alsaedi, Three-dimensional rotating flow of Jeffrey fluid for Cattaneo-Christov heat flux model, AIP Adv. 6 (2016) Article Id: 025012.
DOI: 10.1063/1.4942091
Google Scholar
[11]
K. A. Kumar, J. V. R. Reddy, V. Sugunamma, N. Sandeep, Magnetohydrodynamic Cattaneo-Christov flow past a cone and a wedge with variable heat source/sink, Alex. Eng. J. 57 (2018) 435-443.
DOI: 10.1016/j.aej.2016.11.013
Google Scholar
[12]
J. V. R. Reddy, V. Sugunamma, N. Sandeep, Cross diffusion effects on MHD flow over three different geometries with Cattaneo-Christov heat flux, J. Mol. Liq. 223 (2016) 1234-1241.
DOI: 10.1016/j.molliq.2016.09.047
Google Scholar
[13]
S. U. Mamatha, Mahesha, C.S.K. Raju, Cattaneo-Christov on heat and mass transfer of unsteady Eyring Powell dusty nanofluid over sheet with heat and mass flux conditions, Inf. Med. Unlock. 9 (2017) 76-85.
DOI: 10.1016/j.imu.2017.06.001
Google Scholar
[14]
C. K. Chen, M. I. Char, Heat transfer of a continuous, stretching surface with suction or blowing, J. Math. Anal. Appl. 135 (1988) 568-580.
DOI: 10.1016/0022-247x(88)90172-2
Google Scholar
[15]
P. G. Siddheshwar, U. S. Mahabaleswar, Effect of radiation and heat source on MHD flow of a viscoelastic liquid and heat transfer over a stretching sheet, Int. J. Non-linear Mech. 40 (2005) 807-820.
DOI: 10.1016/j.ijnonlinmec.2004.04.006
Google Scholar
[16]
K. Vajravelu, Viscous flow over a nonlinearly stretching sheet, Appl. Math. Comp. 124 (2001) 281-288.
DOI: 10.1016/s0096-3003(00)00062-x
Google Scholar
[17]
S. Nadeem, R. U. Haq, C. Lee, MHD flow of a Casson fluid over an exponentially shrinking surface, Sci. Iran. B 12 (2012) 1550-1553.
DOI: 10.1016/j.scient.2012.10.021
Google Scholar
[18]
P. Rana, R. Bhargava, Flow and heat transfer of a nanofluid over a nonlinearly stretching sheet: A numerical study, Comm. Nonlinear Sci. Num. Simul. 17 (2012) 212-226.
DOI: 10.1016/j.cnsns.2011.05.009
Google Scholar
[19]
F. Mabood, W. A. Khan, A. I. M. Ismail, MHD boundary layer flow and heat transfer of nanofluids over a nonlinear stretching sheet: A numerical study, J. Magn. Magn. Mate. 374 (2015) 569-576.
DOI: 10.1016/j.jmmm.2014.09.013
Google Scholar
[20]
M. Mustafa, J. A. Khan, T. Hayat, A. Alsaedi, Analytical and numerical solutions for axisymmetric flow of nanofluid due to non-linearly stretching sheet, Int. J. Non-linear Mech. 71 (2015) 22-29.
DOI: 10.1016/j.ijnonlinmec.2015.01.005
Google Scholar
[21]
N. S. Akbar, A. Ebaid, Z.H. Khan, Numerical analysis of magnetic field effects on Eyring-Powell fluid flow towards a stretching sheet, J. Mag. Mag. Mater. 382 (2015) 355-358.
DOI: 10.1016/j.jmmm.2015.01.088
Google Scholar
[22]
N. Sandeep, I.L. Animasaun, Heat transfer in wall jet flow of magnetic-nanofluids with variable magnetic field, Alex. Eng. J. 56 (2017) 263-269.
DOI: 10.1016/j.aej.2016.12.019
Google Scholar
[23]
L. Zheng, L. Wang, X. Zhang, Analytic solutions of unsteady boundary layer flow and heat transfer on a permeable stretching sheet with non-uniform heat source/sink Commun. Nonlinear Sci. Numer. Simulat. 16 (2011) 731-740.
DOI: 10.1016/j.cnsns.2010.05.022
Google Scholar
[24]
J. V. R. Reddy, V. Sugunamma, N. Sandeep, K. A. Kumar, Influence of non-uniform heat source/sink on MHD nanofluid flow past a slendering stretching sheet with slip effects, Global J. Pure Appl. Math. 12 (2016) 247-254.
DOI: 10.1615/computthermalscien.2020027016
Google Scholar
[25]
B. Ramandevi, J. V. R. Reddy, V. Sugunamma, N. Sandeep, Combined influence of viscous dissipation and non-uniform heat source/sink on MHD non-Newtonian fluid flow with Cattaneo-Christov heat flux, Alex. Eng. J. (2017).
DOI: 10.1016/j.aej.2017.01.026
Google Scholar
[26]
M. J. Babu, N. Sandeep, C.S.K. Raju, Heat and mass transfer in MHD Eyring-Powell nanofluid flow due to cone in porous medium, Int. J. Eng. Res. Africa 19 (2016) 57-74.
DOI: 10.4028/www.scientific.net/jera.19.57
Google Scholar
[27]
C. Sulochana, G.P.A. Kumar, N. Sandeep, Transpiration effect on stagnation-point flow of a Carreau nanofluid in the presence of thermophoresis and Brownian motion, Alex. Eng. J. 55 (2016) 1151-1157.
DOI: 10.1016/j.aej.2016.03.031
Google Scholar
[28]
M. J. Babu, N. Sandeep, MHD non-Newtonian fluid flow over a slendering stretching sheet in the presence of cross-diffusion effects, Alex. Eng. J. 55 (2016) 2193-2201.
DOI: 10.1016/j.aej.2016.06.009
Google Scholar
[29]
J. V. R. Reddy, K. A. Kumar, V. Sugunamma, N. Sandeep, Effect of cross diffusion on MHD non-Newtonian fluids flow past a stretching sheet with non-uniform heat source/sink: A comparative study, Alex. Eng. J. (2017).
DOI: 10.1016/j.aej.2017.03.008
Google Scholar
[30]
C. Sulochana, G. P. A. Kumar, N. Sandeep, Effect of frictional heating on mixed convection flow of chemically reacting radiative Casson nanofluid over an inclined porous plate, Alex. Eng. J. http://dx.doi.org/10.1016/j.aej.2017.08.006.
DOI: 10.1016/j.aej.2017.08.006
Google Scholar
[31]
C. S. K. Raju, N. Sandeep, Dual solutions for unsteady heat and mass transfer in Bio-convection flow towards a rotating cone/plate in a rotating fluid, Int. J. Eng. Res. in Africa 20 (2015) 161-176.
DOI: 10.4028/www.scientific.net/jera.20.161
Google Scholar
[32]
C. S. K. Raju, N. Sandeep, Heat and mass transfer in MHD non-Newtonian bio-convection flow over a rotating cone/plate with cross diffusion, J. Mol. Liq. 215 (2016) 115-126.
DOI: 10.1016/j.molliq.2015.12.058
Google Scholar
[33]
M. Ramzan, J. D. Chung, N. Ullah, Radiative magnetohydrodynamic nanofluid flow due to gyrotactic microorganisms with chemical reaction and non-linear thermal radiation, Int. J. Mech. Sci. https://doi.org/10.1016/j.ijmecsci.2017.06.009.
DOI: 10.1016/j.ijmecsci.2017.06.009
Google Scholar
[34]
C. S. K. Raju, N. Sandeep, A comparative study on heat and mass transfer of the Blasius and Falkner-Skan flow flow of a bio-convective Casson fluid past a wedge, Eur. Phys. J. Plus 131 (2016).
DOI: 10.1140/epjp/i2016-16405-y
Google Scholar
[35]
W. N. Mutuku, O. D. Makinde, Hydromagnetic bio convection of nanofluid over a permeable vertical plate due to gyrotactic microorganisms. Comp. Fluids, 95 (2014) 88–97.
DOI: 10.1016/j.compfluid.2014.02.026
Google Scholar
[36]
W. A. Khan, O. D. Makinde, Z. H. Khan, MHD boundary layer flow of a nanofluid containing gyrotactic microorganisms past a vertical plate with Navier slip, Int. J. Heat Mass Transf. 74 (2014) 285–291.
DOI: 10.1016/j.ijheatmasstransfer.2014.03.026
Google Scholar
[37]
W. A. Khan, O. D. Makinde, MHD nanofluid bioconvection due to gyrotactic microorganisms over a convectively heat stretching sheet, Int. J. Therm. Sci. 81 (2014) 118-124.
DOI: 10.1016/j.ijthermalsci.2014.03.009
Google Scholar
[38]
O. D. Makinde, I. L. Animasaun, Bio convection in MHD nanofluid flow with nonlinear thermal radiation and quartic autocatalysis chemical reaction past an upper surface of a paraboloid of revolution. , Int. J. Therm. Sci. 109 (2016) 159-171.
DOI: 10.1016/j.ijthermalsci.2016.06.003
Google Scholar
[39]
O. D. Makinde, I. L. Animasaun, Thermophoresis and Brownian motion effects on MHD bioconvection of nanofluid with nonlinear thermal radiation and quartic chemical reaction past an upper horizontal surface of a paraboloid of revolution, J. Mol. Liq. 221 (2016).
DOI: 10.1016/j.molliq.2016.06.047
Google Scholar
[40]
O. D. Makinde, N. Sandeep, I. L.Animasaun, M. S. Tshehla, Numerical exploration of Cattaneo-Christov heat flux and mass transfer in magnetohydrodynamic flow over various geometries, Defect Diff. Forum, 374 (2017) 67-82.
DOI: 10.4028/www.scientific.net/ddf.374.67
Google Scholar
[41]
K. Avinash, N. Sandeep, O. D. Makinde, I.L. Animasaun, Aligned magnetic field effect on radiative bioconvection flow past a vertical plate with thermophoresis and Brownian motion, Defect Diff. Forum, 377 (2017) 127-140.
DOI: 10.4028/www.scientific.net/ddf.377.127
Google Scholar