Rotating Slip Flow in a Shrinking Permeable Channel Considering Hall Current Effects

Article Preview

Abstract:

A mathematical model is proposed to the magnetohydrodynamic (MHD) slip flow in a shrinking permeable channel to simulate and scrutinize the effects of Hall current in a rotating frame of reference. The lower plate of the channel is shrinking permeable and subjected to uniform suction. The partial differential equations governing the flow are transformed into a system of ordinary differential equations using suitable similarity transformation. Numerical computations are performed with the shooting iteration scheme alongside Runge-Kutta fourth-order method. The physical behavior of obtained solution are investigated diagrammatically by considering the effects of various pertinent parameters. Numerical results reveal that an increase in Hall parameter leads to an increase in secondary flow. Results also reveal that rotation and slip at the surface of sheet substantially influence the flow, and control the shear stress.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

534-549

Citation:

Online since:

September 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Sutton, A. Sherman, Engineering Magnetohydrodynamics, McGraw-Hill, New York, (1965).

Google Scholar

[2] B. C. Sakiadis, Boundary-layer behaviour on continuous solid surfaces, AIChE 7 (1961) 268.

Google Scholar

[3] L. J. Crane, Flow past a stretching plate, J. Appl. Math. Phys. 21 (1970) 445- 447.

Google Scholar

[4] O.D. Makinde, A. Aziz, Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition.International Journal of Thermal Sciences 50 (2011) 1326-1332.

DOI: 10.1016/j.ijthermalsci.2011.02.019

Google Scholar

[5] O.D. Makinde, Analysis of Sakiadis flow of nanofluids with viscous dissipation and Newtonian heating. Applied Mathematics and Mechanics, English Edition, 33(12) (2012) 1545–1554.

DOI: 10.1007/s10483-012-1642-8

Google Scholar

[6] P. M. Krishna, N. Sandeep, R. P. Sharma, O.D. Makinde, Thermalradiation effect on 3D slip motion of AlCu-Water and Cu-Water nanofluids over a variable thickness stretched surface.Defect and Diffusion Forum, 377 (2017) 141-154.

DOI: 10.4028/www.scientific.net/ddf.377.141

Google Scholar

[7] O.D. Makinde, Computational modelling of nanofluids flow over a convectively heated unsteady stretching sheet. Current Nanoscience, 9 (2013) 673-678, (2013).

DOI: 10.2174/15734137113099990068

Google Scholar

[8] O. D. Makinde, W. A. Khan, A. Aziz, On inherent irreversibility in Sakiadis flow of nanofluids. International Journal of Exergy, 13(2) (2013) 159-174.

DOI: 10.1504/ijex.2013.056131

Google Scholar

[9] R.P. Sharma, K. Avinash, N. Sandeep, O.D. Makinde, Thermal radiation effect on non-Newtonian fluid flow over a stretched sheet of non-uniform thickness. Defect and Diffusion Forum, 377, (2017) 242-259.

DOI: 10.4028/www.scientific.net/ddf.377.242

Google Scholar

[10] C. Y. Wang, Stretching a surface in a rotating fluid, J. Appl. Math. Phy. 39 (1999) 177-185.

Google Scholar

[11] V. Rajeswari, G. Nath, Unsteady flow over a stretching surface in a rotating fluid, Int. J. Eng. Sci. 30(6) (1992) 747-756.

DOI: 10.1016/0020-7225(92)90104-o

Google Scholar

[12] R. Nazar, N. Amin, I. Pop, Unsteady boundary layer flow due to a stretching surface in a rotating fluid, Mech. Res. Commun. 31 (2004) 121-128.

DOI: 10.1016/j.mechrescom.2003.09.004

Google Scholar

[13] P.D. Ariel, On computation of the three-dimensional flow past a stretching sheet, Appl. Math. Comput. 188(2) (2007) 1244-1250.

DOI: 10.1016/j.amc.2006.10.083

Google Scholar

[14] H.S. Takhar, A. J. Chamkha, G. Nath, MHD flow over a moving plate in a rotating fluid with magnetic field, Hall currents and free stream velocity, Int. J. Eng. Sci. 40 (2002) 1511-1527.

DOI: 10.1016/s0020-7225(02)00016-2

Google Scholar

[15] K.Vajravelu, B. V. R. Kumar, Analytical and numerical solutions of a coupled non-linear system arising in a three-dimensional rotating flow, Int. J. Non-Linear Mech. 39(1) (2004) 13–24.

DOI: 10.1016/s0020-7462(02)00122-1

Google Scholar

[16] C.Y. Wang, Liquid film on an unsteady stretching surface, Quart. Appl. Math. 48(4) (1990) 601-610.

DOI: 10.1090/qam/1079908

Google Scholar

[17] Y.Tan, S.J. Liao, Series solution of three-dimensional unsteady laminar viscous flow due to a stretching surface in a rotating fluid, ASME J. Appl. Mech. 74(5) (2007) 1011-1018.

DOI: 10.1115/1.2723816

Google Scholar

[18] S. Das, R.N. Jana, O.D. Makinde, Magnetohydrodynamic free convective flow of nanofluid past an oscillating porous flat plate in a rotating system with thermal radiation and Hall effects. Journal of Mechanics, 32(2) (2016) 197-210.

DOI: 10.1017/jmech.2015.49

Google Scholar

[19] A.S. Eegunjobi, O.D. Makinde, Inherent irreversibility in a variable viscosity Hartmann flow through a rotating permeable channel with Hall effects. Defect and Diffusion Forum, 377 (2017) 180-188.

DOI: 10.4028/www.scientific.net/ddf.377.180

Google Scholar

[20] S. Das, H.K. Mandal, R. N. Jana, O. D. Makinde, Magneto-Nanofluid flow past an impulsively started porous flat plate in a rotating frame. Journal of Nanofluids, 4(2) (2015) 167-175.

DOI: 10.1166/jon.2015.1135

Google Scholar

[21] S. Das, R.N. Jana, O. D. Makinde, Transient hydromagnetic reactive Couette flow and heat transfer in a rotating frame of reference. Alexandria Engineering Journal, 55(1) (2016) 635-644.

DOI: 10.1016/j.aej.2015.12.009

Google Scholar

[22] D.S. Chauhan, R. Agrawal, MHD flow and heat transfer in a channel bounded by a shrinking sheet and a plate with porous substrate, J. Eng. Phys. Thermophys. 84 (2011) 1034-1046.

DOI: 10.1007/s10891-011-0564-y

Google Scholar

[23] D.S. Chauhan, R. Agrawal, MHD flow and heat transfer in a channel bounded by a shrinking sheet and a porous medium bed: homotopy analysis method, ISRN Thermodynamics 2013 (2013) 1-10.

DOI: 10.1155/2013/291270

Google Scholar

[24] M. Sheikholeslami, D.D. Ganji, Three dimensional heat and mass transfer in a rotating system using nanofluid, Powder Tech. 253(2014) 789-796.

DOI: 10.1016/j.powtec.2013.12.042

Google Scholar

[25] O. D. Makinde, T. Iskander, F. Mabood, W.A. Khan, M. S. Tshehla, MHD Couette-Poiseuille flow of variable viscosity nanofluids in a rotating permeable channel with Hall effects. Journal of Molecular Liquids, 221 (2016) 778-787.

DOI: 10.1016/j.molliq.2016.06.037

Google Scholar

[26] G. S. Seth, S. Sarkar, O. D. Makinde, Combined free and forced convection Couette-Hartmann flow in a rotating channel with arbitrary conducting walls and Hall effects. Journal of Mechanics, 32 (5) (2016) 613-629.

DOI: 10.1017/jmech.2016.70

Google Scholar

[27] F. Mabood, W.A. Khan, O. D. Makinde, Hydromagnetic flow of a variable viscosity nanofluid in a rotating permeable channel with hall effects. Journal of Engineering Thermophysics, 26 (4) (2017) 553-566.

DOI: 10.1134/s1810232817040105

Google Scholar

[28] R. Kumar, R. Kumar, S. A. Shehzad, Sheikholeslami, M. Rotating frame analysis of radiating and reacting ferro-nanofluid considering Joule heating and viscous dissipation, Int. J. Heat Mass Transf. 120 (2018) 540-551.

DOI: 10.1016/j.ijheatmasstransfer.2017.12.069

Google Scholar

[29] R. N. Jana, A. S. Gupta, N. Datta, Hall effects on the hydromagnetic flow past an infinite porous flat plate, J. Phys. Soc. Jpn. 43 (5) (1977) 1767-1772.

DOI: 10.1143/jpsj.43.1767

Google Scholar

[30] T.G. Cowling, Magnetohydrodynamics, New York, Interscience, (1957).

Google Scholar

[31] R.C. Meyer, On reducing aerodynamic heat transfer rates by magnetohydrodynamic techniques, J. Aerospace Sci. 25 (1958) 561-566.

DOI: 10.2514/8.7781

Google Scholar

[32] G. Sutton, A. Sherman, Engineering Magnetohydrodynamics, McGraw-Hill, New York, (1965).

Google Scholar