[1]
G. Sutton, A. Sherman, Engineering Magnetohydrodynamics, McGraw-Hill, New York, (1965).
Google Scholar
[2]
B. C. Sakiadis, Boundary-layer behaviour on continuous solid surfaces, AIChE 7 (1961) 268.
Google Scholar
[3]
L. J. Crane, Flow past a stretching plate, J. Appl. Math. Phys. 21 (1970) 445- 447.
Google Scholar
[4]
O.D. Makinde, A. Aziz, Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition.International Journal of Thermal Sciences 50 (2011) 1326-1332.
DOI: 10.1016/j.ijthermalsci.2011.02.019
Google Scholar
[5]
O.D. Makinde, Analysis of Sakiadis flow of nanofluids with viscous dissipation and Newtonian heating. Applied Mathematics and Mechanics, English Edition, 33(12) (2012) 1545–1554.
DOI: 10.1007/s10483-012-1642-8
Google Scholar
[6]
P. M. Krishna, N. Sandeep, R. P. Sharma, O.D. Makinde, Thermalradiation effect on 3D slip motion of AlCu-Water and Cu-Water nanofluids over a variable thickness stretched surface.Defect and Diffusion Forum, 377 (2017) 141-154.
DOI: 10.4028/www.scientific.net/ddf.377.141
Google Scholar
[7]
O.D. Makinde, Computational modelling of nanofluids flow over a convectively heated unsteady stretching sheet. Current Nanoscience, 9 (2013) 673-678, (2013).
DOI: 10.2174/15734137113099990068
Google Scholar
[8]
O. D. Makinde, W. A. Khan, A. Aziz, On inherent irreversibility in Sakiadis flow of nanofluids. International Journal of Exergy, 13(2) (2013) 159-174.
DOI: 10.1504/ijex.2013.056131
Google Scholar
[9]
R.P. Sharma, K. Avinash, N. Sandeep, O.D. Makinde, Thermal radiation effect on non-Newtonian fluid flow over a stretched sheet of non-uniform thickness. Defect and Diffusion Forum, 377, (2017) 242-259.
DOI: 10.4028/www.scientific.net/ddf.377.242
Google Scholar
[10]
C. Y. Wang, Stretching a surface in a rotating fluid, J. Appl. Math. Phy. 39 (1999) 177-185.
Google Scholar
[11]
V. Rajeswari, G. Nath, Unsteady flow over a stretching surface in a rotating fluid, Int. J. Eng. Sci. 30(6) (1992) 747-756.
DOI: 10.1016/0020-7225(92)90104-o
Google Scholar
[12]
R. Nazar, N. Amin, I. Pop, Unsteady boundary layer flow due to a stretching surface in a rotating fluid, Mech. Res. Commun. 31 (2004) 121-128.
DOI: 10.1016/j.mechrescom.2003.09.004
Google Scholar
[13]
P.D. Ariel, On computation of the three-dimensional flow past a stretching sheet, Appl. Math. Comput. 188(2) (2007) 1244-1250.
DOI: 10.1016/j.amc.2006.10.083
Google Scholar
[14]
H.S. Takhar, A. J. Chamkha, G. Nath, MHD flow over a moving plate in a rotating fluid with magnetic field, Hall currents and free stream velocity, Int. J. Eng. Sci. 40 (2002) 1511-1527.
DOI: 10.1016/s0020-7225(02)00016-2
Google Scholar
[15]
K.Vajravelu, B. V. R. Kumar, Analytical and numerical solutions of a coupled non-linear system arising in a three-dimensional rotating flow, Int. J. Non-Linear Mech. 39(1) (2004) 13–24.
DOI: 10.1016/s0020-7462(02)00122-1
Google Scholar
[16]
C.Y. Wang, Liquid film on an unsteady stretching surface, Quart. Appl. Math. 48(4) (1990) 601-610.
DOI: 10.1090/qam/1079908
Google Scholar
[17]
Y.Tan, S.J. Liao, Series solution of three-dimensional unsteady laminar viscous flow due to a stretching surface in a rotating fluid, ASME J. Appl. Mech. 74(5) (2007) 1011-1018.
DOI: 10.1115/1.2723816
Google Scholar
[18]
S. Das, R.N. Jana, O.D. Makinde, Magnetohydrodynamic free convective flow of nanofluid past an oscillating porous flat plate in a rotating system with thermal radiation and Hall effects. Journal of Mechanics, 32(2) (2016) 197-210.
DOI: 10.1017/jmech.2015.49
Google Scholar
[19]
A.S. Eegunjobi, O.D. Makinde, Inherent irreversibility in a variable viscosity Hartmann flow through a rotating permeable channel with Hall effects. Defect and Diffusion Forum, 377 (2017) 180-188.
DOI: 10.4028/www.scientific.net/ddf.377.180
Google Scholar
[20]
S. Das, H.K. Mandal, R. N. Jana, O. D. Makinde, Magneto-Nanofluid flow past an impulsively started porous flat plate in a rotating frame. Journal of Nanofluids, 4(2) (2015) 167-175.
DOI: 10.1166/jon.2015.1135
Google Scholar
[21]
S. Das, R.N. Jana, O. D. Makinde, Transient hydromagnetic reactive Couette flow and heat transfer in a rotating frame of reference. Alexandria Engineering Journal, 55(1) (2016) 635-644.
DOI: 10.1016/j.aej.2015.12.009
Google Scholar
[22]
D.S. Chauhan, R. Agrawal, MHD flow and heat transfer in a channel bounded by a shrinking sheet and a plate with porous substrate, J. Eng. Phys. Thermophys. 84 (2011) 1034-1046.
DOI: 10.1007/s10891-011-0564-y
Google Scholar
[23]
D.S. Chauhan, R. Agrawal, MHD flow and heat transfer in a channel bounded by a shrinking sheet and a porous medium bed: homotopy analysis method, ISRN Thermodynamics 2013 (2013) 1-10.
DOI: 10.1155/2013/291270
Google Scholar
[24]
M. Sheikholeslami, D.D. Ganji, Three dimensional heat and mass transfer in a rotating system using nanofluid, Powder Tech. 253(2014) 789-796.
DOI: 10.1016/j.powtec.2013.12.042
Google Scholar
[25]
O. D. Makinde, T. Iskander, F. Mabood, W.A. Khan, M. S. Tshehla, MHD Couette-Poiseuille flow of variable viscosity nanofluids in a rotating permeable channel with Hall effects. Journal of Molecular Liquids, 221 (2016) 778-787.
DOI: 10.1016/j.molliq.2016.06.037
Google Scholar
[26]
G. S. Seth, S. Sarkar, O. D. Makinde, Combined free and forced convection Couette-Hartmann flow in a rotating channel with arbitrary conducting walls and Hall effects. Journal of Mechanics, 32 (5) (2016) 613-629.
DOI: 10.1017/jmech.2016.70
Google Scholar
[27]
F. Mabood, W.A. Khan, O. D. Makinde, Hydromagnetic flow of a variable viscosity nanofluid in a rotating permeable channel with hall effects. Journal of Engineering Thermophysics, 26 (4) (2017) 553-566.
DOI: 10.1134/s1810232817040105
Google Scholar
[28]
R. Kumar, R. Kumar, S. A. Shehzad, Sheikholeslami, M. Rotating frame analysis of radiating and reacting ferro-nanofluid considering Joule heating and viscous dissipation, Int. J. Heat Mass Transf. 120 (2018) 540-551.
DOI: 10.1016/j.ijheatmasstransfer.2017.12.069
Google Scholar
[29]
R. N. Jana, A. S. Gupta, N. Datta, Hall effects on the hydromagnetic flow past an infinite porous flat plate, J. Phys. Soc. Jpn. 43 (5) (1977) 1767-1772.
DOI: 10.1143/jpsj.43.1767
Google Scholar
[30]
T.G. Cowling, Magnetohydrodynamics, New York, Interscience, (1957).
Google Scholar
[31]
R.C. Meyer, On reducing aerodynamic heat transfer rates by magnetohydrodynamic techniques, J. Aerospace Sci. 25 (1958) 561-566.
DOI: 10.2514/8.7781
Google Scholar
[32]
G. Sutton, A. Sherman, Engineering Magnetohydrodynamics, McGraw-Hill, New York, (1965).
Google Scholar