Slip Flow of an Unsteady Nanofluid Past a Stretching Surface in a Transverse Magnetic Field Using SRM

Article Preview

Abstract:

A theoretical and numerical examination has been completed to talk about the unsteady, two dimensional slip flow of a nanofluid of heat and mass transfer with transverse magnetic field was investigated in this paper. A stretching surface is used to investigate the flow. Obtained nonlinear equations are solved by Spectral Relaxation Method (SRM) technique and the results are verified by comparing the results obtained by using the Matlab in-built boundary value problem solver bvp4c, and the outcomes which are published in previous papers. The outcomes are exhibited pictorially and talked about difference coming about parameters. Expanding heat transfer rate, mass transfer rate and velocity slip raises velocity yet to be diminishes temperature and skin friction (surface shear stress).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

562-574

Citation:

Online since:

September 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. U. S. Choi, Enhancing thermal conductivity of fluids with nanoparticles. In: Developments and Applications of Non-Newtonian Flows. FED, Vol. 231/MD, 66 (1995) 99-105.

Google Scholar

[2] A. Mnyusiwalla, A. S. Daar, P. A. Singer, (2003), Mind the gap: science and ethics in nanotechnology. Nanotechnology, 14 (2003) R9-R13.

DOI: 10.1088/0957-4484/14/3/201

Google Scholar

[3] O.D. Makinde, F. Mabood, W.A. Khan, M.S. Tshehla, MHD flow of a variable viscosity nanofluid over a radially stretching convective surface with radiative heat. Journal of Molecular Liquids, 219 (2016) 624-630.

DOI: 10.1016/j.molliq.2016.03.078

Google Scholar

[4] Haroun NA, Precious Sibanda P, Sabyasachi Mondal S and Sandile S Motsa SS, (2015).

Google Scholar

[5] Awad F., Haroun NAH, Sibanda P and Khumalo M, (2006), On Couple Stress Effects on Unsteady Nanofluid Flow over Stretching Surfaces with Vanishing Nanoparticle Flux at the Wall, Journal of Applied Fluid Mechanics, Vol. 9, No. 4, p.1937-(1944).

DOI: 10.18869/acadpub.jafm.68.235.24940

Google Scholar

[6] Merkin, J. H.: Natural-Convection Boundary-Layer Flow on a Vertical Surface with Newtonian Heating, Int. J. Heat Fluid Flow, 15, 392 (1994).

DOI: 10.1016/0142-727x(94)90053-1

Google Scholar

[7] Sparrow, E.M.; Lin, S.H.: Laminar heat transfer in tubes under slip-flow conditions. ASME J. Heat Transf. 84, 363–639 (1962).

DOI: 10.1115/1.3684399

Google Scholar

[8] Inman, R.M.: Heat transfer for laminar slip flow of a rarefied gas in a parallel plate channel or a circular tube with uniform wall temperature. NASA Tech. Report, D-2213 (1964).

DOI: 10.1016/0038-092x(65)90094-0

Google Scholar

[9] Larrode, F.E.; Housiadas, C.; Drossinos, Y.: Slip-flow heat transfer in circular tubes. Int. J. Heat Mass Transf. 43, 2669–2680 (2000).

DOI: 10.1016/s0017-9310(99)00324-5

Google Scholar

[10] Spillane, S.: A study of boundary layer flow with no-slip and slip boundary conditions. PhD Thesis, Dublin Inst. of Technology, Ireland (2007).

Google Scholar

[11] Crane, L.J.; McVeigh, A.G.: Slip flow on a microcylinder. Z. Angew. Math. Phys. 61(3), 579–582 (2010).

DOI: 10.1007/s00033-009-0019-x

Google Scholar

[12] T. Chinyoka, O. D. Makinde, Analysis of entropy generation rate in an unsteady porous channel flow with Navier slip and convective cooling. Entropy 15 (2013) 2081-(2099).

DOI: 10.3390/e15062081

Google Scholar

[13] A. M. Olanrewaju, O. D. Makinde, On boundary layer stagnation point flow of a nanofluid over a permeable flat surface with Newtonian heating. Chemical Engineering Communications 200 (6) (2013) 836-852.

DOI: 10.1080/00986445.2012.721825

Google Scholar

[14] O. D. Makinde, A. Aziz, Mixed convection from a convectively heated vertical plate to a fluid with internal heat generation. ASME, Journal of Heat Transfer, 133 (2011) 122501(6pages).

DOI: 10.1115/1.4027606

Google Scholar

[15] A. O. Bég, J. Zueco, L. M. Lopez-Ochoa, Network numerical analysis of optically thick hydromagnetic slip flow from a porous spinning disk with radiation flux, variable thermophysical properties, and surface injection effects. Chem. Eng. Commun. 198(2011).

DOI: 10.1080/00986445.2010.512543

Google Scholar

[16] C. Y. Wang, C. O. Ng, Slip flow due to a stretching cylinder. Int. J. Non-Linear Mech. 46 (2011) 1191–1194.

DOI: 10.1016/j.ijnonlinmec.2011.05.014

Google Scholar

[17] P.R. Sharma, S. Choudhary, O.D. Makinde, MHD slip flow and heat transfer over an exponentially stretching permeable sheet embedded in a porous medium with heat source.Frontiers in Heat and Mass Transfer, 9(2017) 013018 (pp.1-7), (2017).

DOI: 10.5098/hmt.9.18

Google Scholar

[18] S. Das, R. N. Jana, O. D. Makinde: Magnetohydrodynamic mixed convective slip over an inclined porous plate with viscous dissipation and Joule heating. Alexandria Engineering Journal, Vol. 54(2) (2015)251-261.

DOI: 10.1016/j.aej.2015.03.003

Google Scholar

[19] G. Singh, O. D. Makinde, Axisymmetric slip flow on a vertical cylinder with heat transfer. Sains Malaysiana 43(3) (2014) 483–489.

Google Scholar

[20] Reddy, K.C.: Thermal boundary layer in slip flow regime. AIAA J. 1(10), 2396–2398 (1963).

DOI: 10.2514/3.2078

Google Scholar

[21] A. S. Eegunjobi, O. D. Makinde: Effects of Navier slip on entropy generation in a porous channel with suction/injection. Journal of Thermal Science and Technology, 7(4)(2012) 522-535.

DOI: 10.1299/jtst.7.522

Google Scholar

[22] Hasimoto,H.: Boundary-layer slip solutions for a flat plate. J.Aeronaut. Sci. 25(1), 68–69 (1958).

DOI: 10.2514/8.7502

Google Scholar

[23] Pozzi, A.: Similar solutions in boundary layer slip flow. AIAA J. 1(5), 1219–1219 (1963).

DOI: 10.2514/3.1770

Google Scholar

[24] Wuest, W.: Boundary layers in rarefied gas flow. Prog. Aerosp. Sci. 8, 295–352 (1967).

Google Scholar

[25] Maslen, S.H.: Second-order effects in laminar boundary layers. AIAA J. 1(1), 33–40 (1963).

DOI: 10.2514/3.1462

Google Scholar

[26] Van Dyke, M.: Higher order boundary layer theory. Annu. Rev. Fluid Mech. 1, 265–292 (1969).

DOI: 10.1146/annurev.fl.01.010169.001405

Google Scholar

[27] Abdul Gaffar, S.; Ramachandra Prasad, V.; Keshava Reddy, E.; Anwar Bég, O.: Free Convection Flow and Heat Transfer of Non-Newtonian Tangent Hyperbolic Fluid from an Isothermal Sphere with Partial Slip, Arab J Sci Eng., (2014).

DOI: 10.1007/s13369-014-1310-5

Google Scholar

[28] S. Das, R. N. Jana, O. D. Makinde, Slip flow and radiative heat transfer on a convectively heated vertical cylinder, Journal of Engineering Physics and Thermophysics, 90(3) (2017)568-574.

DOI: 10.1007/s10891-017-1602-1

Google Scholar

[29] Gombosi, T.A.: Gaskinetic Theory. Cambridge Univ. Press, Cambridge (2002).

Google Scholar

[30] Ho, C.M.; Tai, Y.-C.: Micro-electro-mechanical-systems (MEMS) and fluid flows. Annu. Rev. Fluid Mech. 30, 579–612 (1998).

DOI: 10.1146/annurev.fluid.30.1.579

Google Scholar

[31] Gad-el-Hak,M.: The fluidmechanics ofmicro devices: the freeman scholar lecture. J. Fluids Eng. 121(1), 5–33 (1999).

Google Scholar

[32] Motsa SS and Makukula ZG, (2013), On spectral relaxation method approach for steady von kárman flow of a reiner-rivlin fluid with joule heating, viscous dissipation and suction/injection. Cent. Eur. J. Phys., Vol.11(3), p.363–374.

DOI: 10.2478/s11534-013-0182-8

Google Scholar

[33] Kameswaran P, Sibanda P, and Motsa SS, (2013). A spectral relaxation method for thermal dispersion and radiation effects in a nanofluid flow. Boundary Value Problems 2013, 242.

DOI: 10.1186/1687-2770-2013-242

Google Scholar

[34] Grubka LG, and Bobba KM, (1985), Heat transfer characteristics of a continuous stretching surface with variable temperature, J. Heat Transfer – Trans. ASME, Vol.107, p.248 – 250.

DOI: 10.1115/1.3247387

Google Scholar

[35] Ishak A, (2010), Unsteady MHD flow and heat transfer in over a stretching plate, J. Applied Sci., Vol. 10 (18), p.2127 – 2130.

DOI: 10.3923/jas.2010.2127.2131

Google Scholar

[36] Vajravelu K, Prasad KV, Chiu – On Ng, (2013), Unsteady convective boundary layer flow of a viscous fluid at a vertical surface with variable fluid properties, Nonlinear Analysis: Real World Applications, Vol.14, p.455 – 464.

DOI: 10.1016/j.nonrwa.2012.07.008

Google Scholar