[1]
O.D. Makinde, W.A. Khan, Z.H. Khan, Buoyancy effects on MHD stagnation point flow and heat transfer of a nanofluid past a convectively heated stretching/shrinking sheet, International Journal of Heat and Mass Transfer, 62 (2013) 526-533.
DOI: 10.1016/j.ijheatmasstransfer.2013.03.049
Google Scholar
[2]
R. Kandasamy, I. Muhaimi, R. Mohamad, Thermophoresis and Brownian motion effects on MHD boundary-layer flow of a nanofluid in the presence of thermal stratifi cation due to solar radiation, International Journal of Mechanical Sciences, 70 (2013).
DOI: 10.1016/j.ijmecsci.2013.03.007
Google Scholar
[3]
W.A. Khan, O.D. Makinde, Z.H. Khan, MHD boundary layer flow of a nanofluid containing gyrotactic microorganisms past a vertical plate with Navier slip, International Journal of Heat and Mass Transfer, 74 (2014) 285-291.
DOI: 10.1016/j.ijheatmasstransfer.2014.03.026
Google Scholar
[4]
W.A. Khan, O.D. Makinde, MHD nanofluid bioconvection due to gyrotactic microorganisms over a convectively heat stretching sheet, International Journal of Thermal Sciences, 81 (2014) 118-124.
DOI: 10.1016/j.ijthermalsci.2014.03.009
Google Scholar
[5]
S. Nadeem , R.U. Haq, Z.H. Khan, Numerical study of MHD boundary layer flow of a Maxwell fluid past a stretching sheet in the presence of nanoparticles, Journal of the Taiwan Institute of Chemical Engineers, 45 (2014) 121-126.
DOI: 10.1016/j.jtice.2013.04.006
Google Scholar
[6]
F. Mabood, W.A. Khan, A.I.M. Ismail, MHD boundary layer flow and heat transfer of nanofluids over a nonlinear stretching sheet: A numerical study, Journal of Magnetism and Magnetic Materials, 374 (2015) 569-576.
DOI: 10.1016/j.jmmm.2014.09.013
Google Scholar
[7]
N.S. Bondareva, M.A. Sheremet, I. Pop, Magnetic field effect on the unsteady natural convection in a right-angle trapezoidal cavity filled with a nanofluid, International Journal of Numerical Methods for Heat & Fluid Flow, 8 (2015) 1924-(1946).
DOI: 10.1108/hff-07-2014-0236
Google Scholar
[8]
T. Hayat, M. Waqas, M.I. Khan, A. Alsaedi, Analysis of thixotropic nanomaterial in a doubly stratified medium considering magnetic field effects, International Journal of Heat and Mass Transfer, 102 (2016) 1123-1129.
DOI: 10.1016/j.ijheatmasstransfer.2016.06.090
Google Scholar
[9]
M. Farooq, M.I. Khan, M. Waqas, T. Hayat, A. Alsaedi, M.I. Khan, MHD stagnation point flow of viscoelastic nanofluid with non-linear radiation effects, Journal of Molecular Liquids, 221 (2016) 1097-1103.
DOI: 10.1016/j.molliq.2016.06.077
Google Scholar
[10]
M. Sheikholeslami, D.D. Ganji, M.M. Rashidi, Magnetic field effect on unsteady nanofluid flow and heat transfer using Buongiorno model, Journal of Magnetism and Magnetic Materials ,416 (2016) 164-173.
DOI: 10.1016/j.jmmm.2016.05.026
Google Scholar
[11]
A.M. Rashad, M.A. Ismael, A.J. Chamkha, M.A. Mansour, MHD mixed convection of localized heat source/sink in a nanofluid-filled lid-driven square cavity with partial slip, Journal of the Taiwan Institute of Chemical Engineers, 68 (2016) 173–186.
DOI: 10.1016/j.jtice.2016.08.033
Google Scholar
[12]
S. Srinivas, A.V. lakshmi, A.S. Reddy, T.R.R. Mohan, MHD flow of a nanofluid in an expanding or Contracting porous pipe with chemical reaction and heat source/sink ,Propulsion and Power Research, 5 (2016) 134-148.
DOI: 10.1016/j.jppr.2016.04.004
Google Scholar
[13]
M.A. Sheremet, H.F. Oztop, I. Pop, K.A. Salem, MHD free convection in a wavy open porous tall cavity filled with nanofluids under an effect of corner heater, International Journal of Heat and Mass Transfer, 103 (2016) 955-964.
DOI: 10.1016/j.ijheatmasstransfer.2016.08.006
Google Scholar
[14]
D. Pal, G. Mandal, K. Vajravelu, Flow and heat transfer of nanofluids at a stagnation point flow over a stretching/shrinking surface in a porous medium with thermal radiation, Applied Mathematics and Computation, 238 (2014) 208–224.
DOI: 10.1016/j.amc.2014.03.145
Google Scholar
[15]
S.E. Ahmed, A.K. Hussein, H.A. Mohammed, S. Sivasankaran, Boundary layer flow and heat transfer due to permeable stretching tube in the presence of heat source/sink utilizing nanofluids, Applied Mathematics and Computation, 238 (2014) 149–162.
DOI: 10.1016/j.amc.2014.03.106
Google Scholar
[16]
M. Mahmoodi, Sh. Kandelousi, Effects of thermophoresis and Brownian motion on nanofluid heat transfer and entropy generation, Journal of Molecular Liquids, 211 (2015) 15–24.
DOI: 10.1016/j.molliq.2015.06.057
Google Scholar
[17]
M.A. Mansour, S.E. Ahmed, A numerical study on natural convection in porous media-filled an inclined triangular enclosure with heat sources using nanofluid in the presence of heat generation effect, Engineering Science and Technology an International Journal, 18 (2015).
DOI: 10.1016/j.jestch.2015.03.007
Google Scholar
[18]
M.M. Bhatti, M.M. Rashidi, Effects of thermo-diffusion and thermal radiation on Williamson nanofluid over a porous shrinking/stretching sheet, Journal of Molecular Liquids ,221 (2016) 567-573.
DOI: 10.1016/j.molliq.2016.05.049
Google Scholar
[19]
M. Sheikholeslami, T. Hayat, A. Alsaedi, MHD free convection of Al2O3–water nanofluid considering thermal radiation: A numerical study, International Journal of Heat and Mass Transfer, 96 (2016) 513–524.
DOI: 10.1016/j.ijheatmasstransfer.2016.01.059
Google Scholar
[20]
M. Khan, M. Irfan, W.A. Khan, Impact of nonlinear thermal radiation and gyrotactic microorganisms on the Magneto-Burgers nanofuid, International Journal of Mechanical Sciences, 130 (2017) 375-382.
DOI: 10.1016/j.ijmecsci.2017.06.030
Google Scholar
[21]
K. Das, N. Acharya, P.K. Kundu, The onset of nanofluid flow past a convectively heated shrinking sheet in presence of heat source/sink: A Lie group approach, Applied Thermal Engineering, 103 ( 2016) 38-46.
DOI: 10.1016/j.applthermaleng.2016.03.112
Google Scholar
[22]
A. Malvandi, S.A. Moshizi, D.D. Ganji, Two-component heterogeneous mixed convection of alumina/water nanofluid in microchannels with heat source/sink, Advanced Powder Technology, 27 (2016) 245-254.
DOI: 10.1016/j.apt.2015.12.009
Google Scholar
[23]
F.M. Abbasi, S.A. Shehzad, T. Hayat, M.S. Alhuthali, Mixed convection flow of jeffrey nanofluid with thermal radiation and double stratification, Journal of Hydrodynamics, 28 (2016) 840-849.
DOI: 10.1016/s1001-6058(16)60686-8
Google Scholar
[24]
M. Ramzan, M. Bilal, J.D. Chung, Effects of thermal and solutal stratification on Jeffrey magneto-nanofluid along an inclined stretching cylinder with thermal radiation and heat generation/absorption, International Journal of Mechanical Sciences, 131 (2017).
DOI: 10.1016/j.ijmecsci.2017.07.012
Google Scholar
[25]
T. Thumma, O.A. Beg, A. Kadir, Numerical study of heat source/sink effects on dissipative magnetic nanofluid flow from a non-linear inclined stretching/shrinking sheet. Journal of Molecular Liquids, 232 (2017) 159-173.
DOI: 10.1016/j.molliq.2017.02.032
Google Scholar
[26]
O. D. Makinde, A. Aziz, Mixed convection from a convectively heated vertical plate to a fluid with internal heat generation, ASME, Journal of Heat Transfer, 133 (2011) 1-6.
DOI: 10.1115/1.4004432
Google Scholar
[27]
O. D. Makinde, Chemically reacting hydromagnetic unsteady flow of a radiating fluid past a vertical plate with constant heat flux. Z. Naturforsch., 67 (2012) 239-247.
DOI: 10.5560/zna.2012-0014
Google Scholar
[28]
G. Singh, O. D. Makinde, Computational dynamics of MHD free convection flow along an inclined plate with Newtonian heating in the presence of volumetric heat generation, Chemical Engineering Communications, 199 (2012) 1144-1154.
DOI: 10.1080/00986445.2011.651184
Google Scholar
[29]
G. Makanda, O. D. Makinde, P. Sibanda: Natural convection of viscoelastic fluid from a cone embedded in a porous medium with viscous dissipation.Mathematical Problems in Engineering, 2013(2013) 1-11.
DOI: 10.1155/2013/934712
Google Scholar
[30]
O. D. Makinde, Computational modelling of nanofluids flow over a convectively heated unsteady stretching sheet, Current Nanoscience, 9 (2013) 673-678.
DOI: 10.2174/15734137113099990068
Google Scholar
[31]
P. Ram. V.K. Joshi, O.D. Makinde: Unsteady convective flow of hydrocarbon magnetite nano-suspension in the presence of stretching effects, Defect and Diffusion Forum, 377 (2017) 155-165.
DOI: 10.4028/www.scientific.net/ddf.377.155
Google Scholar
[32]
R. Sivaraj, B.R. Kumar, Viscoelastic fluid flow over a moving vertical cone and flat plate with variable electric conductivity, International Journal of Heat and Mass Transfer, 61 (2013) 119-128.
DOI: 10.1016/j.ijheatmasstransfer.2013.01.060
Google Scholar
[33]
B.R. Kumar, R. Sivaraj, Heat and mass transfer in MHD viscoelastic fluid flow over a vertical cone and flat plate with variable viscosity, International Journal of Heat and Mass Transfer, 56 (2013) 370-379.
DOI: 10.1016/j.ijheatmasstransfer.2012.09.001
Google Scholar
[34]
D. Mythili, R. Sivaraj, Influence of higher order chemical reaction and non-uniform heat source/sink on Casson fluid flow over a vertical cone and flat plate, Journal of Molecular Liquids ,216 (2016) 466-475.
DOI: 10.1016/j.molliq.2016.01.072
Google Scholar
[35]
J. Benazir, R. Sivaraj, O.D. Makinde, Unsteady Magnetohydrodynamic Casson fluid flow over a vertical cone and flat plate with non-uniform heat source/sink, International Journal of Engineering Research in Africa, 21 (2016) 69-83.
DOI: 10.4028/www.scientific.net/jera.21.69
Google Scholar
[36]
T. Hayat, M. Imtiaz, A. Alsaedi, Partial slip effects in flow over nonlinear stretching surface, Applied Mathematics and Mechanics, 36 (2015) 1513–1526.
DOI: 10.1007/s10483-015-1999-7
Google Scholar
[37]
P. Sreedevi, P.S. Reddy, A.J. Chamkha, Heat and mass transfer analysis of nanofluid over linear and non-linear stretching surfaces with thermal radiation and chemical reaction, Powder Technology, 315 (2017) 194-204.
DOI: 10.1016/j.powtec.2017.03.059
Google Scholar