Unsteady Flow of Chemically Reacting Nanofluid over a Cone and Plate with Heat Source/Sink

Article Preview

Abstract:

The intention of this communication is to explore the characteristics of Lorentz force on the fluid transport properties of a chemically reacting nanofluid with two types of geometries. Simulations have been done to investigate the controlling equations utilizing Crank-Nicolson scheme. Influence of embedded parameters such as Hartman number, heat source/sink, Brownian diffusion, chemical reaction parameter and thermophoretic diffusivity is graphically presented. Tables demonstrate the significant impact of sundry parameters on skin-friction factor, heat and mass transfer rates. The achieved results expose that the Hartman number having high influences on the fluid flow and heat transfer characteristics.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

615-624

Citation:

Online since:

September 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O.D. Makinde, W.A. Khan, Z.H. Khan, Buoyancy effects on MHD stagnation point flow and heat transfer of a nanofluid past a convectively heated stretching/shrinking sheet, International Journal of Heat and Mass Transfer, 62 (2013) 526-533.

DOI: 10.1016/j.ijheatmasstransfer.2013.03.049

Google Scholar

[2] R. Kandasamy, I. Muhaimi, R. Mohamad, Thermophoresis and Brownian motion effects on MHD boundary-layer flow of a nanofluid in the presence of thermal stratifi cation due to solar radiation, International Journal of Mechanical Sciences, 70 (2013).

DOI: 10.1016/j.ijmecsci.2013.03.007

Google Scholar

[3] W.A. Khan, O.D. Makinde, Z.H. Khan, MHD boundary layer flow of a nanofluid containing gyrotactic microorganisms past a vertical plate with Navier slip, International Journal of Heat and Mass Transfer, 74 (2014) 285-291.

DOI: 10.1016/j.ijheatmasstransfer.2014.03.026

Google Scholar

[4] W.A. Khan, O.D. Makinde, MHD nanofluid bioconvection due to gyrotactic microorganisms over a convectively heat stretching sheet, International Journal of Thermal Sciences, 81 (2014) 118-124.

DOI: 10.1016/j.ijthermalsci.2014.03.009

Google Scholar

[5] S. Nadeem , R.U. Haq, Z.H. Khan, Numerical study of MHD boundary layer flow of a Maxwell fluid past a stretching sheet in the presence of nanoparticles, Journal of the Taiwan Institute of Chemical Engineers, 45 (2014) 121-126.

DOI: 10.1016/j.jtice.2013.04.006

Google Scholar

[6] F. Mabood, W.A. Khan, A.I.M. Ismail, MHD boundary layer flow and heat transfer of nanofluids over a nonlinear stretching sheet: A numerical study, Journal of Magnetism and Magnetic Materials, 374 (2015) 569-576.

DOI: 10.1016/j.jmmm.2014.09.013

Google Scholar

[7] N.S. Bondareva, M.A. Sheremet, I. Pop, Magnetic field effect on the unsteady natural convection in a right-angle trapezoidal cavity filled with a nanofluid, International Journal of Numerical Methods for Heat & Fluid Flow, 8 (2015) 1924-(1946).

DOI: 10.1108/hff-07-2014-0236

Google Scholar

[8] T. Hayat, M. Waqas, M.I. Khan, A. Alsaedi, Analysis of thixotropic nanomaterial in a doubly stratified medium considering magnetic field effects, International Journal of Heat and Mass Transfer, 102 (2016) 1123-1129.

DOI: 10.1016/j.ijheatmasstransfer.2016.06.090

Google Scholar

[9] M. Farooq, M.I. Khan, M. Waqas, T. Hayat, A. Alsaedi, M.I. Khan, MHD stagnation point flow of viscoelastic nanofluid with non-linear radiation effects, Journal of Molecular Liquids, 221 (2016) 1097-1103.

DOI: 10.1016/j.molliq.2016.06.077

Google Scholar

[10] M. Sheikholeslami, D.D. Ganji, M.M. Rashidi, Magnetic field effect on unsteady nanofluid flow and heat transfer using Buongiorno model, Journal of Magnetism and Magnetic Materials ,416 (2016) 164-173.

DOI: 10.1016/j.jmmm.2016.05.026

Google Scholar

[11] A.M. Rashad, M.A. Ismael, A.J. Chamkha, M.A. Mansour, MHD mixed convection of localized heat source/sink in a nanofluid-filled lid-driven square cavity with partial slip, Journal of the Taiwan Institute of Chemical Engineers, 68 (2016) 173–186.

DOI: 10.1016/j.jtice.2016.08.033

Google Scholar

[12] S. Srinivas, A.V. lakshmi, A.S. Reddy, T.R.R. Mohan, MHD flow of a nanofluid in an expanding or Contracting porous pipe with chemical reaction and heat source/sink ,Propulsion and Power Research, 5 (2016) 134-148.

DOI: 10.1016/j.jppr.2016.04.004

Google Scholar

[13] M.A. Sheremet, H.F. Oztop, I. Pop, K.A. Salem, MHD free convection in a wavy open porous tall cavity filled with nanofluids under an effect of corner heater, International Journal of Heat and Mass Transfer, 103 (2016) 955-964.

DOI: 10.1016/j.ijheatmasstransfer.2016.08.006

Google Scholar

[14] D. Pal, G. Mandal, K. Vajravelu, Flow and heat transfer of nanofluids at a stagnation point flow over a stretching/shrinking surface in a porous medium with thermal radiation, Applied Mathematics and Computation, 238 (2014) 208–224.

DOI: 10.1016/j.amc.2014.03.145

Google Scholar

[15] S.E. Ahmed, A.K. Hussein, H.A. Mohammed, S. Sivasankaran, Boundary layer flow and heat transfer due to permeable stretching tube in the presence of heat source/sink utilizing nanofluids, Applied Mathematics and Computation, 238 (2014) 149–162.

DOI: 10.1016/j.amc.2014.03.106

Google Scholar

[16] M. Mahmoodi, Sh. Kandelousi, Effects of thermophoresis and Brownian motion on nanofluid heat transfer and entropy generation, Journal of Molecular Liquids, 211 (2015) 15–24.

DOI: 10.1016/j.molliq.2015.06.057

Google Scholar

[17] M.A. Mansour, S.E. Ahmed, A numerical study on natural convection in porous media-filled an inclined triangular enclosure with heat sources using nanofluid in the presence of heat generation effect, Engineering Science and Technology an International Journal, 18 (2015).

DOI: 10.1016/j.jestch.2015.03.007

Google Scholar

[18] M.M. Bhatti, M.M. Rashidi, Effects of thermo-diffusion and thermal radiation on Williamson nanofluid over a porous shrinking/stretching sheet, Journal of Molecular Liquids ,221 (2016) 567-573.

DOI: 10.1016/j.molliq.2016.05.049

Google Scholar

[19] M. Sheikholeslami, T. Hayat, A. Alsaedi, MHD free convection of Al2O3–water nanofluid considering thermal radiation: A numerical study, International Journal of Heat and Mass Transfer, 96 (2016) 513–524.

DOI: 10.1016/j.ijheatmasstransfer.2016.01.059

Google Scholar

[20] M. Khan, M. Irfan, W.A. Khan, Impact of nonlinear thermal radiation and gyrotactic microorganisms on the Magneto-Burgers nanofuid, International Journal of Mechanical Sciences, 130 (2017) 375-382.

DOI: 10.1016/j.ijmecsci.2017.06.030

Google Scholar

[21] K. Das, N. Acharya, P.K. Kundu, The onset of nanofluid flow past a convectively heated shrinking sheet in presence of heat source/sink: A Lie group approach, Applied Thermal Engineering, 103 ( 2016) 38-46.

DOI: 10.1016/j.applthermaleng.2016.03.112

Google Scholar

[22] A. Malvandi, S.A. Moshizi, D.D. Ganji, Two-component heterogeneous mixed convection of alumina/water nanofluid in microchannels with heat source/sink, Advanced Powder Technology, 27 (2016) 245-254.

DOI: 10.1016/j.apt.2015.12.009

Google Scholar

[23] F.M. Abbasi, S.A. Shehzad, T. Hayat, M.S. Alhuthali, Mixed convection flow of jeffrey nanofluid with thermal radiation and double stratification, Journal of Hydrodynamics, 28 (2016) 840-849.

DOI: 10.1016/s1001-6058(16)60686-8

Google Scholar

[24] M. Ramzan, M. Bilal, J.D. Chung, Effects of thermal and solutal stratification on Jeffrey magneto-nanofluid along an inclined stretching cylinder with thermal radiation and heat generation/absorption, International Journal of Mechanical Sciences, 131 (2017).

DOI: 10.1016/j.ijmecsci.2017.07.012

Google Scholar

[25] T. Thumma, O.A. Beg, A. Kadir, Numerical study of heat source/sink effects on dissipative magnetic nanofluid flow from a non-linear inclined stretching/shrinking sheet. Journal of Molecular Liquids, 232 (2017) 159-173.

DOI: 10.1016/j.molliq.2017.02.032

Google Scholar

[26] O. D. Makinde, A. Aziz, Mixed convection from a convectively heated vertical plate to a fluid with internal heat generation, ASME, Journal of Heat Transfer, 133 (2011) 1-6.

DOI: 10.1115/1.4004432

Google Scholar

[27] O. D. Makinde, Chemically reacting hydromagnetic unsteady flow of a radiating fluid past a vertical plate with constant heat flux. Z. Naturforsch., 67 (2012) 239-247.

DOI: 10.5560/zna.2012-0014

Google Scholar

[28] G. Singh,  O. D. Makinde, Computational dynamics of MHD free convection flow along an inclined plate with Newtonian heating in the presence of volumetric heat generation, Chemical Engineering Communications, 199 (2012) 1144-1154.

DOI: 10.1080/00986445.2011.651184

Google Scholar

[29] G. Makanda, O. D. Makinde, P. Sibanda: Natural convection of viscoelastic fluid from a cone embedded in a porous medium with viscous dissipation.Mathematical Problems in Engineering, 2013(2013) 1-11.

DOI: 10.1155/2013/934712

Google Scholar

[30] O. D. Makinde, Computational modelling of nanofluids flow over a convectively heated unsteady stretching sheet, Current Nanoscience, 9 (2013) 673-678.

DOI: 10.2174/15734137113099990068

Google Scholar

[31] P. Ram. V.K. Joshi, O.D. Makinde: Unsteady convective flow of hydrocarbon magnetite nano-suspension in the presence of stretching effects, Defect and Diffusion Forum,  377 (2017) 155-165.

DOI: 10.4028/www.scientific.net/ddf.377.155

Google Scholar

[32] R. Sivaraj, B.R. Kumar, Viscoelastic fluid flow over a moving vertical cone and flat plate with variable electric conductivity, International Journal of Heat and Mass Transfer, 61 (2013) 119-128.

DOI: 10.1016/j.ijheatmasstransfer.2013.01.060

Google Scholar

[33] B.R. Kumar, R. Sivaraj, Heat and mass transfer in MHD viscoelastic fluid flow over a vertical cone and flat plate with variable viscosity, International Journal of Heat and Mass Transfer, 56 (2013) 370-379.

DOI: 10.1016/j.ijheatmasstransfer.2012.09.001

Google Scholar

[34] D. Mythili, R. Sivaraj, Influence of higher order chemical reaction and non-uniform heat source/sink on Casson fluid flow over a vertical cone and flat plate, Journal of Molecular Liquids ,216 (2016) 466-475.

DOI: 10.1016/j.molliq.2016.01.072

Google Scholar

[35] J. Benazir, R. Sivaraj, O.D. Makinde, Unsteady Magnetohydrodynamic Casson fluid flow over a vertical cone and flat plate with non-uniform heat source/sink, International Journal of Engineering Research in Africa, 21 (2016) 69-83.

DOI: 10.4028/www.scientific.net/jera.21.69

Google Scholar

[36] T. Hayat, M. Imtiaz, A. Alsaedi, Partial slip effects in flow over nonlinear stretching surface, Applied Mathematics and Mechanics, 36 (2015) 1513–1526.

DOI: 10.1007/s10483-015-1999-7

Google Scholar

[37] P. Sreedevi, P.S. Reddy, A.J. Chamkha, Heat and mass transfer analysis of nanofluid over linear and non-linear stretching surfaces with thermal radiation and chemical reaction, Powder Technology, 315 (2017) 194-204.

DOI: 10.1016/j.powtec.2017.03.059

Google Scholar