Transient Rotational Flow of Radiative Nanofluids over an Impermeable Riga Plate with Variable Properties

Article Preview

Abstract:

The present investigation imparts an analysis on the effect of time-varying rotation and thermal radiation on diversified nanofluids possessing water as base fluid and Magnetite , Cupper Oxide (CuO), and Titania (TiO) as nanoparticles. Variable fluid properties such as variable viscosity and variable thermal conductivity are taken into consideration. Ensuring implementation, Successive Relaxation method is the instrumental in obtaining the most appropriate numerical solution of the transformed differential equations. One of the marvel outcomes of the current study is that moderate rotation reduces the axial and transverse wall shear stresses and augments the heat transfer rate while higher rotation exhibits the reverse trend for Water-Magnetite, Water-Cupper Oxide, Water-Titania nanofluids.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

640-652

Citation:

Online since:

September 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, ASME Fluids Eng. Division, 231 (1995) 99–105.

Google Scholar

[2] W. Khan, I. Pop, Boundary-layer flow of a nanofluid past a stretching sheet, Int. J. Heat Mass Transf. 53 (2010) 2477-2483.

DOI: 10.1016/j.ijheatmasstransfer.2010.01.032

Google Scholar

[3] O.D. Makinde, W.A. Khan, Z.H. Khan, Stagnation point flow of MHD chemically reacting nanofluid over a stretching convective surface with slip and radiative heat. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering. 231(4) (2017).

DOI: 10.1177/0954408916629506

Google Scholar

[4] S. Khamis, O. D. Makinde, Y. Nkansah-Gyekye, Unsteady flow of variable viscosity Cu-water and Al2O3-water nanofluids in a porous pipe with buoyancy force. International Journal of Numerical Methods in Heat and Fluid Flow, 25(7) (2015) 1638 – 1657.

DOI: 10.1108/hff-09-2014-0286

Google Scholar

[5] L. Yang, K. Du, A comprehensive review on heat transfer characteristics of TiO2 nanofluids, Int. J. Heat Mass Transf. 108 (2017) 11–31.

DOI: 10.1016/j.ijheatmasstransfer.2016.11.086

Google Scholar

[6] F. Mabood, W. A. Khan, O. D. Makinde, Hydromagnetic flow of a variable viscosity nanofluid in a rotating permeable channel with Hall effects. Journal of Engineering Thermophysics, 26(4) (2017) 553-566.

DOI: 10.1134/s1810232817040105

Google Scholar

[7] W. A. Khan, O. D. Makinde, Z. H. Khan:Non-aligned MHD stagnation point flow of variable viscosity nanofluids past a stretching sheet with radiative heat. International Journal of Heat and Mass Transfer, 96(2016) 525-534.

DOI: 10.1016/j.ijheatmasstransfer.2016.01.052

Google Scholar

[8] M.K. Nayak, MHD 3D flow and heat transfer analysis of nanofluid by shrinking surface inspired by thermal radiation and viscous dissipation, Int. J. Mech. Sci. 124 (2017) 185-193.

DOI: 10.1016/j.ijmecsci.2017.03.014

Google Scholar

[9] M.K. Nayak, N.S. Akbar, V.S. Pandey, Z.H. Khan, D. Tripathi, MHD 3D free convective flow of nanofluid over an exponential stretching sheet with chemical reaction, Adv. Powder Technol.

DOI: 10.1016/j.apt.2017.05.022

Google Scholar

[10] M. K. Nayak, S Shaw, V S Pandey, A J Chamkha, Combined effects of slip and convective boundary condition on MHD 3D stretched flow of nanofluid through porous media inspired by non-linear thermal radiation, Ind. J Phys.

DOI: 10.1007/s12648-018-1188-2

Google Scholar

[11] M.K. Nayak, S Shaw, O. D. Makinde, A. J. Chamkha, Effects of Homogenous–Heterogeneous reactions on radiative NaCl-CNP nanofluid flow past a convectively heated vertical Riga plate, J. Nanofluids.

DOI: 10.1166/jon.2018.1501

Google Scholar

[12] P. D. Weidman, The motion induced by a radially stretching membrane in a rotating fluid system, ZAMM. Z. Angew. Math. Mech. 95 (12) (2015) 1582–1586.

DOI: 10.1002/zamm.201500094

Google Scholar

[13] H. Rosali, A. Ishak, R. Nazar, I.Pop, Rotating flow over an exponentially shrinking sheet with suction, J. of Mol. Liq. 211 (2015) 965–969.

DOI: 10.1016/j.molliq.2015.08.026

Google Scholar

[14] M. Mustafa, T. Hayat, A. Alsaedi, Rotating flow of Oldroyd-B fluid over stretchable surface with Cattaneo-Christov heat flux: analytic solutions,, Int. J. of Num. Meth. for Heat & Fluid Flow, https://doi.org/10.1108/HFF-08-2016-0323.

DOI: 10.1108/hff-08-2016-0323

Google Scholar

[15] O.D. Makinde, A. Ogulu, The effect of thermal radiation on the heat and mass transfer flow of a variable viscosity fluid past a vertical porous plate permeated by a transverse magnetic field, Chem. Eng. Commn. 195 (12) (2008) 1575–1584.

DOI: 10.1080/00986440802115549

Google Scholar

[16] M.K. Nayak, Chemical reaction effect on MHD viscoelastic fluid over a stretching sheet through porous medium, Meccanica 51 (2016) 1699-1711.

DOI: 10.1007/s11012-015-0329-3

Google Scholar

[17] J. K. Zhang, B.W. Li, H. Dong, X.H. Luo, H. Lin, Analysis of magnetohydrodynamics (MHD) natural convection in 2D cavity and 3D cavity with thermal radiation effects, Int. J. of Heat Mass Trans. 112 (2017) 216–223.

DOI: 10.1016/j.ijheatmasstransfer.2017.04.105

Google Scholar

[18] Z. Abbas, T. Javed, M. Sajid, N. Ali, Unsteady MHD flow and heat transfer on a stretching sheet in a rotating fluid, J. of Taiwan Inst. of Chem. Eng. 41 (2010) 644–650.

DOI: 10.1016/j.jtice.2010.02.002

Google Scholar

[19] M. Q. Brewster, Thermal radiative transfer properties, Wiley, New York, (1972).

Google Scholar

[20] O. Pourmehran, M. Rahimi-Gorji, D.D. Ganji, Heat transfer and flow analysis of nanofluid flow induced by a stretching sheet in the presence of an external magnetic field, J. Taiwan Inst. Chem. Eng. 65 (2016) 162-171.

DOI: 10.1016/j.jtice.2016.04.035

Google Scholar

[21] O.D. Makinde, I. L. Animasaun, Bioconvection in MHD nanofluid flow with nonlinear thermal radiation and quartic autocatalysis chemical reaction past an upper surface of a paraboloid of revolution, International Journal of Thermal Sciences, 109 (2016).

DOI: 10.1016/j.ijthermalsci.2016.06.003

Google Scholar

[22] R. Nazar, N. Amin, I. Pop, Unsteady boundary layer flow due to a stretching surface in a rotating fluid, Mechanics Research Communications, 31, (2004), 121-128.

DOI: 10.1016/j.mechrescom.2003.09.004

Google Scholar