Ferrofluid Convection in a Lid-Driven Cavity

Article Preview

Abstract:

This study numerically investigates the mixed convection of ferrofluids in a partially heated lid driven square enclosure. The heater is located to the left vertical wall and the right vertical wall is kept at constant lower temperature while other walls of the cavity are assumed to be adiabatic. The governing equations are solved with Galerkin weighted residual finite element method. The influence of the Richardson number (between 0.01 and 100), heater location (between 0.25 H and 0.75H), strength of the magnetic dipole (between 0 and 4), and horizontal location of the magnetic dipole source (between-2H and-0.5H) on the fluid flow and heat transfer are numerically investigated. It is found that local and averaged heat transfer deteriorates with increasing values of Richardson number and magnetic dipole strength. The flow field and thermal characteristics are sensitive to the magnetic dipole source strength and its position and heater location.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

407-419

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. J. Chamkha, On laminar hydromagnetic mixed convection flow in a vertical channel with symmetric and asymmetric wall heating conditions, International Journal of Heat and Mass Transfer 45 (2002) 2509-2525.

DOI: 10.1016/s0017-9310(01)00342-8

Google Scholar

[2] G. Lorenzini, C. Biserni, Numerical investigation on mixed convection in a non-Newtonian fluid inside a vertical duct, International Journal of Thermal Sciences 43 (2004) 1153-1160.

DOI: 10.1016/j.ijthermalsci.2004.04.005

Google Scholar

[3] G.M. Barros, G. Lorenzini, L.A. Isoldi, L.A.O. Rocha, E.D. dos Santos, Influence of mixed convection laminar flows on the geometrical evaluation of a triangular arrangement of circular cylinders, International Journal of Heat and Mass Transfer 114 (2017).

DOI: 10.1016/j.ijheatmasstransfer.2017.07.010

Google Scholar

[4] F. Selimefendigil, H. F. Oztop, A. J. Chamkha, Analysis of mixed convection of nanofluid in a 3D lid-driven trapezoidal cavity with flexible side surfaces and inner cylinder, International Communications in Heat and Mass Transfer 87 (2017) 40-51.

DOI: 10.1016/j.icheatmasstransfer.2017.06.015

Google Scholar

[5] T. Strek, H. Jopek, Computer simulation of heat transfer through a ferrofluid, phys. stat. sol. (b) 244 (2007) 1027-1037.

DOI: 10.1002/pssb.200572720

Google Scholar

[6] T. Bednarz , J.C. Patterson, C. Lei, H. Ozoe, 2009, Enhancing natural convection in a cube using a strong magnetic field- experimental heat transfer rate measurements and flow visualization, International Communications in Heat and Mass Transfer 36 (2009).

DOI: 10.1016/j.icheatmasstransfer.2009.06.005

Google Scholar

[7] M. Hasanuzzaman, H.F. Oztop, M. Rahman, N. Rahim, R. Saidur, Y.Varol, Magnetohydrodynamic natural convection in trapezoidal cavities, International Communications in Heat and Mass Transfer 39 (2012) 1384-1394.

DOI: 10.1016/j.icheatmasstransfer.2012.08.009

Google Scholar

[8] H.F. Oztop, K. Al-Salem, I. Pop, Mhd mixed convection in a lid-driven cavity with corner heater, International Journal of Heat and Mass Transfer 54 (2011) 494-504.

DOI: 10.1016/j.ijheatmasstransfer.2011.03.036

Google Scholar

[9] F. Selimefendigil, H.F. Oztop, Numerical study of MHD mixed convection in a nanofluid filled lid-driven square enclosure with a rotating cylinder, International Journal of Heat and Mass Transfer 78 (2014) 741-754.

DOI: 10.1016/j.ijheatmasstransfer.2014.07.031

Google Scholar

[10] F. Selimefendigil, H. F. Öztop, Influence of inclination angle of magnetic field on mixed convection of nanofluid flow over a backward facing step and entropy generation, Advanced Powder Technology, 26 (2015) 1663-1675.

DOI: 10.1016/j.apt.2015.10.002

Google Scholar

[11] F. Selimefendigil, H.F. Oztop, K. Al-Salem, Natural convection of ferrofluids in partially heated square enclosures, Journal of Magnetism and Magnetic Materials 372 (2014) 122-133.

DOI: 10.1016/j.jmmm.2014.07.058

Google Scholar

[12] S.M. Ibrahim, G. Lorenzini, P. Vijaya Kumar, C.S.K. Raju, Influence of chemical reaction and heat source on dissipative MHD mixed convection flow of a Casson nanofluid over a nonlinear permeable stretching sheet, Int. J. Heat Mass Transfer 111 (2017).

DOI: 10.1016/j.ijheatmasstransfer.2017.03.097

Google Scholar

[13] F. Selimefendigil, H.F. Oztop, Forced convection of ferrofluids in a vented cavity with a rotating cylinder, International Journal of Thermal Sciences 86 (2014) 258-275.

DOI: 10.1016/j.ijthermalsci.2014.07.007

Google Scholar

[14] E. Magyari, A.J. Chamkha, Exact analytical results for the thermosolutal MHD Marangoni boundary layers, International Journal of Thermal Sciences 47 (2008) 848-857.

DOI: 10.1016/j.ijthermalsci.2007.07.004

Google Scholar

[15] F. Selimefendigil, H. F. Oztop, A. J. Chamkha, MHD mixed convection and entropy generation of nanofluid filled lid driven cavity under the influence of inclined magnetic fields imposed to its upper and lower diagonal triangular domains, Journal of Magnetism and Magnetic Materials 406 (2016).

DOI: 10.1016/j.jmmm.2016.01.039

Google Scholar

[16] M. A. Mansour, A. M. Rashad, R. S. R. Gorla, S. Siddiqa, Inclined Magneto-Hydrodynamic Mixed Convection In Lid-Driven Cavity Filled Within Nanofluids With Partial Slip And Internal Heat Generation, Journal of Nanofluids 5(4) (2016) 634-651.

DOI: 10.1166/jon.2016.1246

Google Scholar

[17] F. Selimefendigil, H. F. Öztop, Conjugate natural convection in a nanofluid filled partitioned horizontal annulus formed by two isothermal cylinder surfaces under magnetic field, International Journal of Heat and Mass Transfer, 108 (2017).

DOI: 10.1016/j.ijheatmasstransfer.2016.11.080

Google Scholar

[18] S. Sivasankaran, M. A. Mansour, A. M. Rashad, M. Bhuvaneswari, MHD Mixed Convection Of Cu-Water Nanofluid In A Two-Sided Lid-Driven Porous Cavity With A Partial Slip, Numerical Heat Transfer, Part A, 70(12) (2016) 1356-1370.

DOI: 10.1080/10407782.2016.1243957

Google Scholar

[19] A.M. Rashad, Rama Subba Reddy Gorla, M. A. Mansour, Sameh Elsayed Ahmed, Magnetohydrodynamic Effect on Natural Convection in a Cavity Filled With Porous Medium Saturated with Nanofluid, Journal of Porous Media, 20(4)(2017) 363-379.

DOI: 10.1615/jpormedia.v20.i4.50

Google Scholar

[20] F. Selimefendigil, H. F. Öztop, Ali J. Chamkha, Fluid–structure-magnetic field interaction in a nanofluid filled lid-driven cavity with flexible side wall, European Journal of Mechanics - B/Fluids, 61 (2017) 77-85.

DOI: 10.1016/j.euromechflu.2016.03.009

Google Scholar

[21] A. M. Rashad, M. M. Rashidi, Giulio Lorenzini, Sameh E. Ahmed, Abdelraheem M. Aly, Magnetic Field And Internal Heat Generation Effects On The Free Convection In A Rectangular Cavity Filled With A Porous Medium Saturated With Cu-Water Nanofluid, International Journal of Heat and Mass Transfer, 104 (2017).

DOI: 10.1016/j.ijheatmasstransfer.2016.08.025

Google Scholar

[22] A. M. Rashad, S. Sivasankaran, M. A. Mansour, M. Bhuvaneswari, Magneto-convection of nanofluids in a lid-driven trapezoidal cavity with internal heat generation and discrete heating, Numerical Heat Transfer, Part A: Applications, 71(12) (2017).

DOI: 10.1080/10407782.2017.1347000

Google Scholar

[23] A. J. Chamkha, A. M. Rashad, M. A. Mansour, T. Armaghani, and M. Ghalambaz, Effects of heat sink and source and entropy generation on MHD mixed convection of a Cu-water nanofluid in a lid-driven square porous enclosure with partial slip, Physics of Fluids 29, (2017).

DOI: 10.1063/1.4981911

Google Scholar

[24] F. Selimefendigil, H. F. Öztop, Modeling and optimization of MHD mixed convection in a lid-driven trapezoidal cavity filled with alumina–water nanofluid: Effects of electrical conductivity models, International Journal of Mechanical Sciences 136 (2018).

DOI: 10.1016/j.ijmecsci.2017.12.035

Google Scholar

[25] A. J. Chamkha, A. M. Rashad, T. Armaghani, M. A. Mansour, Effects of partial slip on entropy generation and MHD combined convection in a lid-driven porous enclosure saturated with a Cu–water nanofluid, Journal of Thermal Analysis and Calorimetry, 132 (2018).

DOI: 10.1007/s10973-017-6918-8

Google Scholar

[26] A. M. Rashad, T. Armaghani, A. J. Chamkha, M. A. Mansour, Entropy generation and MHD natural convection of a nanofluid in an inclined square porous cavity: Effects of a heat sink and source size and location, Chinese J of Physics, 56 (2018).

DOI: 10.1016/j.cjph.2017.11.026

Google Scholar

[27] F. Selimefendigil, H. F. Öztop, Role of magnetic field and surface corrugation on natural convection in a nanofluid filled 3D trapezoidal cavity, International Communications in Heat and Mass Transfer 95 (2018) 182-196.

DOI: 10.1016/j.icheatmasstransfer.2018.05.006

Google Scholar

[28] R. Iwatsu, J. Hyun, K. Kuwahara, Mixed convection in a driven cavity with a stable vertical temperature gradient, Int. J. Heat Mass Transfer 36 (1993) 1601-1608.

DOI: 10.1016/s0017-9310(05)80069-9

Google Scholar