[1]
A. J. Chamkha, On laminar hydromagnetic mixed convection flow in a vertical channel with symmetric and asymmetric wall heating conditions, International Journal of Heat and Mass Transfer 45 (2002) 2509-2525.
DOI: 10.1016/s0017-9310(01)00342-8
Google Scholar
[2]
G. Lorenzini, C. Biserni, Numerical investigation on mixed convection in a non-Newtonian fluid inside a vertical duct, International Journal of Thermal Sciences 43 (2004) 1153-1160.
DOI: 10.1016/j.ijthermalsci.2004.04.005
Google Scholar
[3]
G.M. Barros, G. Lorenzini, L.A. Isoldi, L.A.O. Rocha, E.D. dos Santos, Influence of mixed convection laminar flows on the geometrical evaluation of a triangular arrangement of circular cylinders, International Journal of Heat and Mass Transfer 114 (2017).
DOI: 10.1016/j.ijheatmasstransfer.2017.07.010
Google Scholar
[4]
F. Selimefendigil, H. F. Oztop, A. J. Chamkha, Analysis of mixed convection of nanofluid in a 3D lid-driven trapezoidal cavity with flexible side surfaces and inner cylinder, International Communications in Heat and Mass Transfer 87 (2017) 40-51.
DOI: 10.1016/j.icheatmasstransfer.2017.06.015
Google Scholar
[5]
T. Strek, H. Jopek, Computer simulation of heat transfer through a ferrofluid, phys. stat. sol. (b) 244 (2007) 1027-1037.
DOI: 10.1002/pssb.200572720
Google Scholar
[6]
T. Bednarz , J.C. Patterson, C. Lei, H. Ozoe, 2009, Enhancing natural convection in a cube using a strong magnetic field- experimental heat transfer rate measurements and flow visualization, International Communications in Heat and Mass Transfer 36 (2009).
DOI: 10.1016/j.icheatmasstransfer.2009.06.005
Google Scholar
[7]
M. Hasanuzzaman, H.F. Oztop, M. Rahman, N. Rahim, R. Saidur, Y.Varol, Magnetohydrodynamic natural convection in trapezoidal cavities, International Communications in Heat and Mass Transfer 39 (2012) 1384-1394.
DOI: 10.1016/j.icheatmasstransfer.2012.08.009
Google Scholar
[8]
H.F. Oztop, K. Al-Salem, I. Pop, Mhd mixed convection in a lid-driven cavity with corner heater, International Journal of Heat and Mass Transfer 54 (2011) 494-504.
DOI: 10.1016/j.ijheatmasstransfer.2011.03.036
Google Scholar
[9]
F. Selimefendigil, H.F. Oztop, Numerical study of MHD mixed convection in a nanofluid filled lid-driven square enclosure with a rotating cylinder, International Journal of Heat and Mass Transfer 78 (2014) 741-754.
DOI: 10.1016/j.ijheatmasstransfer.2014.07.031
Google Scholar
[10]
F. Selimefendigil, H. F. Öztop, Influence of inclination angle of magnetic field on mixed convection of nanofluid flow over a backward facing step and entropy generation, Advanced Powder Technology, 26 (2015) 1663-1675.
DOI: 10.1016/j.apt.2015.10.002
Google Scholar
[11]
F. Selimefendigil, H.F. Oztop, K. Al-Salem, Natural convection of ferrofluids in partially heated square enclosures, Journal of Magnetism and Magnetic Materials 372 (2014) 122-133.
DOI: 10.1016/j.jmmm.2014.07.058
Google Scholar
[12]
S.M. Ibrahim, G. Lorenzini, P. Vijaya Kumar, C.S.K. Raju, Influence of chemical reaction and heat source on dissipative MHD mixed convection flow of a Casson nanofluid over a nonlinear permeable stretching sheet, Int. J. Heat Mass Transfer 111 (2017).
DOI: 10.1016/j.ijheatmasstransfer.2017.03.097
Google Scholar
[13]
F. Selimefendigil, H.F. Oztop, Forced convection of ferrofluids in a vented cavity with a rotating cylinder, International Journal of Thermal Sciences 86 (2014) 258-275.
DOI: 10.1016/j.ijthermalsci.2014.07.007
Google Scholar
[14]
E. Magyari, A.J. Chamkha, Exact analytical results for the thermosolutal MHD Marangoni boundary layers, International Journal of Thermal Sciences 47 (2008) 848-857.
DOI: 10.1016/j.ijthermalsci.2007.07.004
Google Scholar
[15]
F. Selimefendigil, H. F. Oztop, A. J. Chamkha, MHD mixed convection and entropy generation of nanofluid filled lid driven cavity under the influence of inclined magnetic fields imposed to its upper and lower diagonal triangular domains, Journal of Magnetism and Magnetic Materials 406 (2016).
DOI: 10.1016/j.jmmm.2016.01.039
Google Scholar
[16]
M. A. Mansour, A. M. Rashad, R. S. R. Gorla, S. Siddiqa, Inclined Magneto-Hydrodynamic Mixed Convection In Lid-Driven Cavity Filled Within Nanofluids With Partial Slip And Internal Heat Generation, Journal of Nanofluids 5(4) (2016) 634-651.
DOI: 10.1166/jon.2016.1246
Google Scholar
[17]
F. Selimefendigil, H. F. Öztop, Conjugate natural convection in a nanofluid filled partitioned horizontal annulus formed by two isothermal cylinder surfaces under magnetic field, International Journal of Heat and Mass Transfer, 108 (2017).
DOI: 10.1016/j.ijheatmasstransfer.2016.11.080
Google Scholar
[18]
S. Sivasankaran, M. A. Mansour, A. M. Rashad, M. Bhuvaneswari, MHD Mixed Convection Of Cu-Water Nanofluid In A Two-Sided Lid-Driven Porous Cavity With A Partial Slip, Numerical Heat Transfer, Part A, 70(12) (2016) 1356-1370.
DOI: 10.1080/10407782.2016.1243957
Google Scholar
[19]
A.M. Rashad, Rama Subba Reddy Gorla, M. A. Mansour, Sameh Elsayed Ahmed, Magnetohydrodynamic Effect on Natural Convection in a Cavity Filled With Porous Medium Saturated with Nanofluid, Journal of Porous Media, 20(4)(2017) 363-379.
DOI: 10.1615/jpormedia.v20.i4.50
Google Scholar
[20]
F. Selimefendigil, H. F. Öztop, Ali J. Chamkha, Fluid–structure-magnetic field interaction in a nanofluid filled lid-driven cavity with flexible side wall, European Journal of Mechanics - B/Fluids, 61 (2017) 77-85.
DOI: 10.1016/j.euromechflu.2016.03.009
Google Scholar
[21]
A. M. Rashad, M. M. Rashidi, Giulio Lorenzini, Sameh E. Ahmed, Abdelraheem M. Aly, Magnetic Field And Internal Heat Generation Effects On The Free Convection In A Rectangular Cavity Filled With A Porous Medium Saturated With Cu-Water Nanofluid, International Journal of Heat and Mass Transfer, 104 (2017).
DOI: 10.1016/j.ijheatmasstransfer.2016.08.025
Google Scholar
[22]
A. M. Rashad, S. Sivasankaran, M. A. Mansour, M. Bhuvaneswari, Magneto-convection of nanofluids in a lid-driven trapezoidal cavity with internal heat generation and discrete heating, Numerical Heat Transfer, Part A: Applications, 71(12) (2017).
DOI: 10.1080/10407782.2017.1347000
Google Scholar
[23]
A. J. Chamkha, A. M. Rashad, M. A. Mansour, T. Armaghani, and M. Ghalambaz, Effects of heat sink and source and entropy generation on MHD mixed convection of a Cu-water nanofluid in a lid-driven square porous enclosure with partial slip, Physics of Fluids 29, (2017).
DOI: 10.1063/1.4981911
Google Scholar
[24]
F. Selimefendigil, H. F. Öztop, Modeling and optimization of MHD mixed convection in a lid-driven trapezoidal cavity filled with alumina–water nanofluid: Effects of electrical conductivity models, International Journal of Mechanical Sciences 136 (2018).
DOI: 10.1016/j.ijmecsci.2017.12.035
Google Scholar
[25]
A. J. Chamkha, A. M. Rashad, T. Armaghani, M. A. Mansour, Effects of partial slip on entropy generation and MHD combined convection in a lid-driven porous enclosure saturated with a Cu–water nanofluid, Journal of Thermal Analysis and Calorimetry, 132 (2018).
DOI: 10.1007/s10973-017-6918-8
Google Scholar
[26]
A. M. Rashad, T. Armaghani, A. J. Chamkha, M. A. Mansour, Entropy generation and MHD natural convection of a nanofluid in an inclined square porous cavity: Effects of a heat sink and source size and location, Chinese J of Physics, 56 (2018).
DOI: 10.1016/j.cjph.2017.11.026
Google Scholar
[27]
F. Selimefendigil, H. F. Öztop, Role of magnetic field and surface corrugation on natural convection in a nanofluid filled 3D trapezoidal cavity, International Communications in Heat and Mass Transfer 95 (2018) 182-196.
DOI: 10.1016/j.icheatmasstransfer.2018.05.006
Google Scholar
[28]
R. Iwatsu, J. Hyun, K. Kuwahara, Mixed convection in a driven cavity with a stable vertical temperature gradient, Int. J. Heat Mass Transfer 36 (1993) 1601-1608.
DOI: 10.1016/s0017-9310(05)80069-9
Google Scholar