Homotopy Analysis Method for Radiation and Hydrodynamic-Thermal Slips Effects on MHD Flow and Heat Transfer Impinging on Stretching Sheet

Article Preview

Abstract:

This article deals with the analytical study of MHD flow and heat transfer over a permeable stretching sheet via homotopy analysis method (HAM). The effect of thermal radiation is included in the energy equation, while velocity and thermal slips are included in the boundary conditions. The governing boundary layer equations are transformed into a set of ordinary differential equations by means of similarity transformations. The effects of different parameters on the flow field and heat transfer characteristics are examined. The results obtained were shown to compare well with the numerical results and for some special cases with the published data available in the literature, which are in favorable agreement. Keywords: MHD; Slip flow; Stretching sheet; Thermal radiation; Homotopy analysis method

You might also be interested in these eBooks

Info:

Periodical:

Pages:

317-327

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Szekely, J., Fluid Flow Phenomena in Metals Processing. Academic Press, New York, (1979).

Google Scholar

[2] Poulikakos, D., Transport Processes in Material Processing, Advances in Heat Transf., Vol. 18, Academic Press, New York, (1996).

Google Scholar

[3] Ishak, A., et al., Hydromagnetic flow and heat transfer adjacent to a stretching vertical sheet. Heat Mass Transf., 44 (2008), p.92–927.

DOI: 10.1007/s00231-007-0322-z

Google Scholar

[4] Aziz, A., Lopez, R. J., Convection-radiation from a continuously moving, variable thermal conductivity sheet or rod undergoing thermal processing, Int. J. Therm. Sci., 50 (2011), p.1523–1531.

DOI: 10.1016/j.ijthermalsci.2011.03.014

Google Scholar

[5] Crane, J., Flow past a stretching plate, Z. Angew. Math. Phys., 21 (1970), p.645–957.

Google Scholar

[6] Carragher, P., Crane, L. J., Heat transfer on a continuous stretching sheet, Zeitschrift für Angewandte Mathematik und Mechanik, 62 (1982), p.564–573.

DOI: 10.1515/9783112546901-009

Google Scholar

[7] Kumari, M., et al., MHD flow and heat transfer over a stretching surface with prescribed wall temperature or heat flux, Wärme-und Stoffübertr, 25 (1990), p.331–336.

DOI: 10.1007/bf01811556

Google Scholar

[8] Chiam, T. C., Hydromagnetic flow over a surface stretching with a power law velocity, Int. J. Eng. Sci. 33(3) (1995), pp.429-435.

DOI: 10.1016/0020-7225(94)00066-s

Google Scholar

[9] Ariel, P. D., MHD flow of a viscoelastic fluid past a stretching sheet with suction, Acta Mech., 105 (1994), p.49–56.

DOI: 10.1007/bf01183941

Google Scholar

[10] Magyari, J. E., Keller, B., Exact solutions for self- similar boundary-layer flows induced by permeable stretching walls, Eur. J. Mech. B-Fluids, 19 (2000), p.109–122.

DOI: 10.1016/s0997-7546(00)00104-7

Google Scholar

[11] Cortell, R., Flow and heat transfer of a fluid through a porous medium over a stretching surface with internal heat generation/absorption and suction/blowing, Fluid Dyn. Resc., 37 (2005), p.231–245.

DOI: 10.1016/j.fluiddyn.2005.05.001

Google Scholar

[12] Ishak, A. et al., Heat transfer over a stretching surface with variable heat flux in micropolar fluids, Phy. Lett. A., 372 (2008), p.559–561.

DOI: 10.1016/j.physleta.2007.08.003

Google Scholar

[13] Bhattacharyya, K., Layek, G. C., Chemically reactive solute distribution in MHD boundary layer flow over a permeable stretching sheet with suction or blowing, Chem. Eng. Commun., 197 (2010), p.1527–1540.

DOI: 10.1080/00986445.2010.485012

Google Scholar

[14] Mukhopadhyay, S., Slip effects on MHD boundary layer flow over an exponentially stretching sheet with suction/blowing and thermal radiation, Ain Shams Eng. J., 4 (2012), 3, pp.485-491.

DOI: 10.1016/j.asej.2012.10.007

Google Scholar

[15] Sivaiah, S., et al., Effects of thermal diffusion and radiation on unsteady MHD free convection flow past an infinite heated vertical plate in a porous medium, ISRN Thermody., Vol. 2012, Article ID 670396, (2012), 8 pages.

DOI: 10.5402/2012/670396

Google Scholar

[16] Takhar, H. S., et al., Radiation effects on MHD free convection flow of a gas past a semi-infinite vertical plate, Int. J. Numer. Meth. Heat Fluid Flow, 6(2) (1996), p.77–83.

DOI: 10.1108/09615539610113118

Google Scholar

[17] Cortell, R., Combined effect of viscous dissipation and thermal radiation on fluid flows over a non-linearly stretched permeable wall, Meccanica, 47 (2012), p.769–781.

DOI: 10.1007/s11012-011-9488-z

Google Scholar

[18] Colin, S., Gas microflows in the slip flow regime: A critical review on convective on convective heat transfer, J. Heat Transf., 134 (2012), 2, 13 pages.

DOI: 10.1115/1.4005063

Google Scholar

[19] Yoshimura, A., Prudhomme, R. K., Wall slip corrections for coquette and parallel disc viscometers, J. Rheol., 32 (1998), p.53–67.

Google Scholar

[20] Andersson, H. I., Slip flow past a stretching surface, Acta Mech., 158 (2002), p.121–125.

Google Scholar

[21] Turkyilmazoglu, M., Multiple solutions of heat and mass transfer of MHD slip flow for the viscoelastic fluid over a stretching sheet, Int. J. Therm. Sci., 50 (2011), 11, p.2264–2276.

DOI: 10.1016/j.ijthermalsci.2011.05.014

Google Scholar

[22] Wang, C. Y., Flow due to a stretching boundary with partial slip-an exact solution of the Naviere-Stokes equations, Chem. Eng. Sci., 57 (2002), 17, pp.3745-3747.

DOI: 10.1016/s0009-2509(02)00267-1

Google Scholar

[23] Liao, S. J., Beyond perturbation: introduction to the homotopy analysis method. Chapman & Hall/CRC Press, Boca Raton, (2003).

Google Scholar

[24] Dinarvand, S., et al., Homotopy analysis method for mixed convection boundary layer flow of a nanofluid over a vertical circular cylinder, THERMAL SCIENCE, 19 (2015), 2, pp.549-561.

DOI: 10.2298/tsci120225165d

Google Scholar

[25] Rashidi, M. M., et al., Mixed convection boundary layer flow of a micro polar fluid towards a heated shrinking sheet by homotopy analysis method, THERMAL SCIENCE, 2013.

DOI: 10.2298/tsci130212096r

Google Scholar

[26] Mabood, F., Khan, W., Approximate analytic solutions for influence of heat transfer on MHD stagnation point flow in porous medium, Computers & Fluids, 100 (2014), p.72–78.

DOI: 10.1016/j.compfluid.2014.05.009

Google Scholar

[27] Goyal, M., Bhargava, R., Boundary layer flow and heat transfer of viscoelastic nanofluids past a stretching sheet with partial slip conditions, Appl. Nanosci., (2013).

DOI: 10.1007/s13204-013-0254-5

Google Scholar

[28] Javed, T., et al., Heat transfer analysis for a hydromagnetic viscous fluid over a non-linear shrinking sheet, Int. J. Heat Mass Transf., 54 (2011), p.2034–(2042).

DOI: 10.1016/j.ijheatmasstransfer.2010.12.025

Google Scholar

[29] Noor, M. F. N., et al., Heat and mass transfer of thermophoretic MHD flow over an inclined radiate isothermal permeable surface in the presence of heat source/sink, Int. J. Heat Mass Transf., 55 (2012), p.2122–2128.

DOI: 10.1016/j.ijheatmasstransfer.2011.12.015

Google Scholar

[30] Cortell, R., Viscous flow and heat transfer over a nonlinearly stretching sheet, Appl. Math. Comput., 184 (2007), p.864–873.

DOI: 10.1016/j.amc.2006.06.077

Google Scholar

[31] Yazdi, M. H., et al., Slip MHD liquid flow and heat transfer over nonlinear permeable stretching surface with chemical reaction, Int. J. Heat and Mass Transf., 54 (2011), p.3214–3225.

DOI: 10.1016/j.ijheatmasstransfer.2011.04.009

Google Scholar

[32] Ali, M. E., On thermal boundary layer on a power-law stretched surface with suction or injection. Int. J. Heat Fluid Flow, 16 (1995), p.280–290.

DOI: 10.1016/0142-727x(95)00001-7

Google Scholar