Cross Diffusion Effects on Heat and Mass Transfer Micropolar Fluid Flow Past a Stretching Surface

Article Preview

Abstract:

Through this study, we investigated the influence of nonlinear thermal radiation, Soret and Dufour effects on unsteady mixed convection boundary flow of micropolar fluid past a stretching sheet. The governing equations of the flow, heat and mass transfer are transformed into a system of nonlinear ordinary differential equations by using self-similarity transformation and solved numerically using bvp4c Matlab package. The influence of various non-dimensional governing parameters on velocity, microrotation, temperature and concentration profiles are discussed and presented with the help of the graphs. Also computed the friction factor, heat and mass transfer rates and presented through tables. Result indicates by increasing the radiation parameter, an improvement is observed in both friction factor and mass transfer rates. .

You might also be interested in these eBooks

Info:

Periodical:

Pages:

265-280

Citation:

Online since:

October 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O. E. Tewfik, E. R. G. Eckert, L. S. Jurewicz, Diffusion-thermo effects on heat transfer from a cylinder in cross flow, J. AIAA 1(7) (1963) 1537-1543.

DOI: 10.2514/3.1852

Google Scholar

[2] R. J. Hartranft, G. C. Sih, The influence of the soret and Dufour effects on the diffusion of heat and moisture in solids, Int. J. Eng. Sci. 18 (1980)1375-1383.

DOI: 10.1016/0020-7225(80)90094-4

Google Scholar

[3] I. Pop, T. Y. Na, A note of MHD flow over a stretching permeable surface, Mech. Res. Comm. 25 (1998) 263-269.

DOI: 10.1016/s0093-6413(98)00037-8

Google Scholar

[4] D. Pal, S. Chatterjee, Heat and mass transfer in MHD non-Darcian flow of a micropolar fluid over a stretching sheet embedded in a porous media with non—uniform heat source and thermal, Com. in Non. Sci. and Num. Sim. 15(7) (2010) 1843-1857.

DOI: 10.1016/j.cnsns.2009.07.024

Google Scholar

[5] M. Sajid, T. Hayat, Influence of thermal radiation on the boundary layer flow due to an exponentially stretching sheet, Int. Com. in Heat and Mass Trans. 35(3) (2008) 347-356.

DOI: 10.1016/j.icheatmasstransfer.2007.08.006

Google Scholar

[6] R. C. Bataller, Viscoelastic fluid flow and heat transfer over a stretching sheet under the effects of a no-uniform heat source, viscous dissipation and thermal radiation, Int. J. Heat Mass Tran. 50 (2007) 3152-3162.

DOI: 10.1016/j.ijheatmasstransfer.2007.01.003

Google Scholar

[7] M. M. Rashidi, B. Rostami, N. Freidoonimehr, S. Abbasbandy, Free convective heat and mass transfer for MHD fluid flow over a permeable vertical stretching sheet in the presence of the radiation and buoyancy effects, Ain Shams Eng. J. 5 (2014).

DOI: 10.1016/j.asej.2014.02.007

Google Scholar

[8] N. Sandeep, C. Sulochana, S. S. Payad, Non-uniform heat source or sink effect on the flow of 3D Casson fluid in the presence of Soret and thermal radiation, Int. J. of Eng. Res. in Afrika 20 (2015) 112-129.

DOI: 10.4028/www.scientific.net/jera.20.112

Google Scholar

[9] M. M. Rashidi, N. Vishnu Ganesh, A. K. Abdul Hakeem, B.Ganga, Buoyancy effect on MHD flow of nanofluid over a stretching sheet in the presence of thermal radiation J. od Mole. Liq.198 (2014) 234-238.

DOI: 10.1016/j.molliq.2014.06.037

Google Scholar

[10] T. Hayat, M. Nawaz, S. Asghar, S. Mesloub, Thermal-diffusion and diffusion-thermo effect on axisymmetric flow of a second grade fluid, Int. J. of Heat and Mass Tran. 54 (2011) 3031-3041.

DOI: 10.1016/j.ijheatmasstransfer.2011.02.045

Google Scholar

[11] M. H. M.Yasin, A. Ishak, I. Pop, MHD heat and mass transfer over a permeable stretching/shrinking sheet with radiation effect, J. of Mag. and Mag. Mat. 407 (2016) 235-240.

DOI: 10.1016/j.jmmm.2016.01.087

Google Scholar

[12] C. S. K. Raju, N. Sandeep, Heat and mass transfer in MHD non-Newtonian bio-convection flow over a rotating cone/plate with cross diffusion, J. of Mole. Liq. 215 (2016) 115-126.

DOI: 10.1016/j.molliq.2015.12.058

Google Scholar

[13] M. M. Nandeppanavar, M. S. Abel, Kemparaju, Effect of thermal radiation and velocity slip on stagnation point flow, heat and mass transfer of hydro magnetic nanofluid due to stretching surface with convective boundary condition, J of Nanofluids 6 (2017).

DOI: 10.1166/jon.2017.1372

Google Scholar

[14] M. M. Rashidi, M. Ali, B. Rostami, P. Rostami, G. N. Xie, Heat and mass transfer for MHD viscoelatic fluid flow over a vertical stretching sheet with considering Soret and Dufour effect Math. Pro. in Eng. (2015)Article Id 861065.

DOI: 10.1155/2015/861065

Google Scholar

[15] M. Khan, M. Azam, Unsteady heat and mass transfer mechanisms in MHD Carreau nanofluid flow, J. of Mole. Liq. 225 (2017) 554-562.

DOI: 10.1016/j.molliq.2016.11.107

Google Scholar

[16] M. Sathish Kumar, N. Sandeep, B. Rushi Kumar, J. Prakash, Effect of Cattaneo_Christov heat flux on nonlinear radiative MHD flow of Casson fluid induced by a semi-infinites stretching surface, FHMT 8 (2017) 8.

DOI: 10.5098/hmt.8.8

Google Scholar

[17] F. I. Alao, A. I. Fagbade, B. O. Falodun, Effects of thermal radiation, Soret and Dufour on an unsteady heat and mass transfer flow of a chemically reacting fluid a semi-infinte vertical plate with viscous dissipation, J of the Nig. Math. Soc. 35(1) (2016).

DOI: 10.1016/j.jnnms.2016.01.002

Google Scholar

[18] D. Harish Babu, Venkateswarlu, P. V. Satya Narayana, Soret and Dufour effects on MHD radiative heat and mass transfer flow of a Jeffrey fluid over a stretching sheet, FHMT 8 (2017)5.

DOI: 10.5098/hmt.8.5

Google Scholar

[19] H. Mondal, P. De, S. Chatterjee, P. Sibanda, P. K. Roy, MHD three-dimensional nanofluid flow on a vertical stretching surface with heat generation/absorption and thermal radiation, J. of Nanofluids 6 (2017)189-195.

DOI: 10.1166/jon.2017.1301

Google Scholar

[20] M. Jayachandra Babu, N. Sandeep, Effects of nonlinear thermal radiation on non-aligned bio-convective stagnation point flow of a magnetic nanofluid over a stretching sheet, Alex. Eng. J. 55(3) (2016)1931-(1939).

DOI: 10.1016/j.aej.2016.08.001

Google Scholar

[21] M. Jayachandra Babu, N. Sandeep, UCM flow across a melting surface in the presence of double stratifiation and cross-diffusion effects, J. of Molecular Liquids 232 (2017) 27-35.

DOI: 10.1016/j.molliq.2017.02.063

Google Scholar

[22] G. Kumaran, N. Sandeep, Thermophoresis and Brownian moment effects on parabolic flow of MHD Casson and Williamson fluids with cross diffusion, J. of Mole. Liquids 233 (2017) 262-269.

DOI: 10.1016/j.molliq.2017.03.031

Google Scholar

[23] G. Kumaran, N. Sandeep and M. E. Ali, Computational analysis of magnetohydrodynamic Casson and Maxwell flows over a stretching sheet with cross diffusion, Results in Physics 7 (2017)147-155.

DOI: 10.1016/j.rinp.2016.12.011

Google Scholar

[24] N. Sandeep and M. Gnaneswara Reddy, MHD Oldroyd-B fluid flow across a melting surface with cross diffusion and double stratification, The European Physical Journal Plus 132 (2017) 147.

DOI: 10.1140/epjp/i2017-11417-9

Google Scholar

[25] M. Sathish Kumar, N. Sandeep, B. Rushi Kumar and P. A. Dinesh, A comparative analysis of magnetohydrodynamic non-Newtonian fluids flow over an exponential stretched sheet, Alexandria Eng. J. (2017).

DOI: 10.1016/j.aej.2017.06.002

Google Scholar

[26] J.V.R. Reddy, K.A. Kumar, V. Sugunamma, N. Sandeep, Effect of cross diffusion on MHD non-Newtonian fluids flow past a stretching sheet with non-uniform heat source/sink: A comparative study, Alexandria Engineering Journal, (2017).

DOI: 10.1016/j.aej.2017.03.008

Google Scholar

[27] J.V.R. Reddy, V. Sugunamma, N. Sandeep, Impact of nonlinear radiation on 3D magnetohydrodynamic flow of methanol and kerosene based ferrofluids with temperature dependent viscosity, Journal of Molecular Liquids, 236 (2017), 93-100.

DOI: 10.1016/j.molliq.2017.04.011

Google Scholar

[28] R. Mehmood, S. Nadeem, S. Saleem, N. S. Akbar, Flow and heat transfer analysis of Jeffery nano fluid imping obliquely over a stretched plate, Journal of the Taiwan Institute of Chemical Engineers, 74 (2017), 49-58.

DOI: 10.1016/j.jtice.2017.02.001

Google Scholar

[29] S. Nadeem and S. Saleem, Analytical study of third grade fluid over a rotating vertical cone in the presence of nanoparticles, International Journal of Heat and Mass transfer, 85 (2015), 1041-1048.

DOI: 10.1016/j.ijheatmasstransfer.2015.02.007

Google Scholar

[30] T. Hayat, S. Makhdoom, A. Awais, S. Saleem and M. M. Rashidi, Axisymmetric Powell-Eyring fluid flow with convective boundary condition: optimal analysis, Applied Mathematics and Mechanics, 37 (2016), 919-928.

DOI: 10.1007/s10483-016-2093-9

Google Scholar

[31] S. Saleem and S. Nadeem, Theoretical analysis of slip flow on a rotating cone with viscous dissipation effects, Journal of Hydrodynamics, Ser. B, 27 (2015), 616-623.

DOI: 10.1016/s1001-6058(15)60523-6

Google Scholar