[1]
S. Ahmed, J. Zueco and Luis M. Lopez-Gonzalez, Effects of chemical reaction, heat and mass transfer and viscous dissipation over a MHD flow in a vertical porous wall using perturbation method, International Journal of Heat and Mass Transfer, 104 (2017).
DOI: 10.1016/j.ijheatmasstransfer.2016.07.076
Google Scholar
[2]
C. Israel-Cookey, A.Ogulu and V. B. Omubo-Pepple, Influence of viscous dissipation and radiation on unsteady MHD free-convection flow past an infinite heated vertical plate in a porous medium with time depedent suction, International Journal of Heat and Mass Transfer, 46 (2003).
DOI: 10.1016/s0017-9310(02)00544-6
Google Scholar
[3]
A. Mahdy, Unsteady MHD slip flow of a non-Newtonian Casson fluid due to stretching sheet with suction or blowing effect, Journal of Applied Fluid Mechanics, 9(2) (2016) 785-793.
DOI: 10.18869/acadpub.jafm.68.225.24687
Google Scholar
[4]
G. Mahanta and S. Shaw, 3D Casson fluid flow past a porous linearly stretching sheet with convective boundary condition, Alexandria Engineering Joural, 54(2015) 653-659.
DOI: 10.1016/j.aej.2015.04.014
Google Scholar
[5]
S. Mukhopadhyay, P. Ranjan De and K. Bhattacharyya, Casson fluid flow over an unsteady stretching surface, Ain Shams Engineering Journal, 4 (2013) 933-938.
DOI: 10.1016/j.asej.2013.04.004
Google Scholar
[6]
S. Pramanik, Casson fluid flow and heat transfer past an exponentially porous stretching surface in the presence of thermal radiation, Ain Shams Engineering Journal, 5 (2014) 205-212.
DOI: 10.1016/j.asej.2013.05.003
Google Scholar
[7]
M. M. Rashidi, S. Bagheri, E. Momoniat and N. Freidoonimehr, Entropy analysis of convective MHD flow of third grade non-Newtonian fluid over a stretching sheet Ain Shams Engineering Journal. http://dx.doi.org/10.101 6/j.asej.2015.08.012.
DOI: 10.1016/j.asej.2015.08.012
Google Scholar
[8]
B. Ramandevi, J.V. Ramana Reddy, V. Sugunamma and N. Sandeep Combined influence of viscous dissipation and non-uniform heat source/sink on MHD non-Newtonian fluid flow with Cattaneo-Christov heat flux, Alexandria Engineering Journal, Doi.org/10.1016/j.aej.2017.01.026.
DOI: 10.1016/j.aej.2017.01.026
Google Scholar
[9]
I. Rashid, R. U. Haq and Q. M. Al-Mdallal, Aligned magnetic field effects on water based melallic nanoparticles over a stretchinng sheet with PST and thermal radiation effects, Physica E, 89 (2017) 33-42.
DOI: 10.1016/j.physe.2017.01.029
Google Scholar
[10]
M. Abd El-Aziz, Dual solutions in hydromagnetic stagnation point flow and heat transfer towards a stretching/shrinking sheet with non-uniform heat source/sink and variable surface heat flux, Journal of the Egyptian Mathematical society, 24 (2016).
DOI: 10.1016/j.joems.2015.09.004
Google Scholar
[11]
T. Hayat, S. Qayyum, A. Alsaedi and A. Shafiq, Inclined magnetic field and heat source/sink aspects in flow of nanofluid with nonlinear thermal radiation, International Journal Heat and Mass Transfer, 103 (2016) 99-107.
DOI: 10.1016/j.ijheatmasstransfer.2016.06.055
Google Scholar
[12]
M. Subhas Abel and N. Mahesha, Heat transfer in MHD viscoelastic fluid flow over a stretching sheet with variable thermal condutivity, non uniform heat source and radiation, Applied Mathematical modelling, 32(2008) 1965-(1983).
DOI: 10.1016/j.apm.2007.06.038
Google Scholar
[13]
F. Mabood, S. M. Ibrahim, M.M. Rashidi, M. S. Shadloo and G. Lorenzini, Non-uniform heat source/sink and Soret effects on MHD non-Darcian convetive flow past a stretching sheet in a micropolar fluid with radiation, International Journal of Heat and Mass Transfer, 93(2016).
DOI: 10.1016/j.ijheatmasstransfer.2015.10.014
Google Scholar
[14]
M. Khan and M. Azam, Unsteady heat and mass transfer mechanisms in MHD Carreau nanofluid flow, Journal of Molecular. Liquids. 225 (2017) 554-562.
DOI: 10.1016/j.molliq.2016.11.107
Google Scholar
[15]
M. Khan, M. Azam and A. Munir, On unsteady Falkner-Skan flow of MHD Carreau nanofluid past a static/moving wedege with convective surface condition, Journal of Molecular Liquids. 2330 (2017) 48-58.
DOI: 10.1016/j.molliq.2016.12.097
Google Scholar
[16]
T. Hayat, S. Farooq, A. Alsaedi and B. Ahmad, Numerical analysis for radial MHD and mixed convection effects in peristalsis of non-Newtonian nanomaterial with zero mass flux conditions, Results in physics, http://dx.doi.org/10.1016/j.rinp.2016.12.048.
DOI: 10.1016/j.rinp.2016.12.048
Google Scholar
[17]
C. Sulochana, G.P. Ashwinkumar and N. Sandeep, Transpiration effects on stagnation-point flow of a Carreau nano fluid in the presence of thermophorsis and Brownian motion, Alexandria Engineering. Journal, 55 (2016) 1151-1157.
DOI: 10.1016/j.aej.2016.03.031
Google Scholar
[18]
C.S.K. Raju and N. Sandeep, unsteady three- dimensional flow of Casson-Carreau fluids past a stretching surface, Alexandria Engineering. Journal, 55 (2016) 1115-1126.
DOI: 10.1016/j.aej.2016.03.023
Google Scholar
[19]
A. Khalid, I. Khan, A. Khan and S. Shafie, Unsteady MHD free convection flow of Casson fluid past over an oscillating plate embedded in a porous medium, Engineering Science. and Technology International Journal, 18 (2015) 309-317.
DOI: 10.1016/j.jestch.2014.12.006
Google Scholar
[20]
S. Nadeem, Arshad Riaz, R. Ellahi, and N. S Akbar, Series solution of unsteady peristaltic flow of a Carreau fluid in eccentric cylinders. Ain Shams Engineering Journal, 5(1) (2014) 293-304.
DOI: 10.1016/j.asej.2013.09.005
Google Scholar
[21]
R. Ellahi, Arshad Riaz, Sohail Nadeem, and Mohamed Ali, Peristaltic flow of Carreau fluid in a rectangular duct through a porous medium, Mathematical Problems in Engineering 2012.
DOI: 10.1155/2012/329639
Google Scholar
[22]
M.J. Uddin, A. Beg, N. Amin, Hydromagnetic transport phenomena from a stretching or shrinking nonlinear nanomaterial sheet with Navier slip and convective heating: a model for bio-nano-materials processing, Journal of Magnetism Magnetic Mater, 368 (2014).
DOI: 10.1016/j.jmmm.2014.05.041
Google Scholar
[23]
R.U. Haq, S. Nadeem, Z.H. Khan, N.F.M. Noor, MHD squeezed flow of water functionalized metallic nanoparticles over a sensor surface, Physica E, 73 (2015) 45–53.
DOI: 10.1016/j.physe.2015.05.007
Google Scholar
[24]
M .K. Nayak, G. C. Dash, and L. P. Singh, Heat and mass transfer effects on MHD viscoelastic fluid over a stretching sheet through porous medium in presence of chemical reaction. Propulsion and Power Research, 5(1) (2016) 70-80.
DOI: 10.1016/j.jppr.2016.01.006
Google Scholar
[25]
M. Kar S.N. Sahoo P.K. Rath G.C. Rath, Heatandmass transfer effects on a dissipative and radiative viscoelastic MHD flow over a stretching porous sheet, Arabian Journal Science Engineering, 39 (5) (2014) 3393–3401.
DOI: 10.1007/s13369-014-0991-0
Google Scholar
[26]
J.C. Arnold A.A. Asir,S.Somasundaram,T.Christopher, Heat transfer in a viscoelastic boundary layer flow over a stretching sheet, International Journal of Heat Mass and Transfer, 53 (2010)1112– 1118.
DOI: 10.1016/j.ijheatmasstransfer.2009.10.046
Google Scholar
[27]
N. Sandeep, C. Sulochana, C.S.K. Raju, M. Jayachandra Babu, Unsteady boundary layer flow of thermophoretic MHD nanofluid past a stretching sheet with space and time dependent internal heat source/sink, Application and Applied Mathematics: An International Journal, 10(1) (2015).
DOI: 10.1166/jon.2015.1181
Google Scholar
[28]
M. Sathish Kumar, N. Sandeep, and B. Rushi Kumar, Free convective heat transfer of mhd dissipative Carreau nanofluid flow over a stretching sheet, Frontiers in Heat and Mass Transfer, 8 (2017).
DOI: 10.5098/hmt.8.13
Google Scholar
[29]
T. Hayat, Sadia Asad, M. Mustafa and Alsaedi, Boundary layer flow of Carreau fluid over a convectively heated stretching sheet, Applied Mathematics and Computation, 246 (2014) 12-22.
DOI: 10.1016/j.amc.2014.07.083
Google Scholar
[30]
C. Sulochana, G.P. Ashwinkumar and N. Sandeep, Transpiration effects on stagnation-point flow of a Carreau nano fluid in the presence of thermophorsis and Brownian motion, Alexandria Engineering Journal, 55 (2016) 1151-1157.
DOI: 10.1016/j.aej.2016.03.031
Google Scholar
[31]
R. Mehmood, S. Nadeem, S. Saleem and N. Sher Akber, Flow and Heat Transfer analysis of a Jeffery Nano fluid impinging obliquely over a stretched plate. Journal of the Taiwan Institute of Chemical Engineers. 74 (2017) 49-58.
DOI: 10.1016/j.jtice.2017.02.001
Google Scholar
[32]
T. Hayat, S. Makhdoom, M. Awais, S. Saleem and M. M. Rashidi, Axisymmetric Powell Eyring fluid flow with convective boundary condition: An optimal analysis, Applied Mathematics and Mechanics (English Edition) 37(7) (2016) 919-928.
DOI: 10.1007/s10483-016-2093-9
Google Scholar
[33]
M. Awais, T. Hayat, S. Irum and S. Saleem, Dual solutions for nonlinear flow using Lie group analysis, PlosONE10(11): e0142732. doi:10.1371/ journal.pone.0142732.
DOI: 10.1371/journal.pone.0142732
Google Scholar
[34]
S. Nadeem, A. U. khan and S. Saleem, A comparative analysis on different nanofluid models for the oscillatory stagnation point flow, The European Physical Journal Plus (2016) 131:261.
DOI: 10.1140/epjp/i2016-16261-9
Google Scholar
[35]
S.P. Anjali Devi, M.Prakesh, Temperature dependent viscosity and thermal conductivity effects on hydromagnetic flow over a slandering stretching sheet, Journal of the Nigerian Mathematical Science. (2015).
DOI: 10.1016/j.jnnms.2015.07.002
Google Scholar
[36]
I.L. Animasaun, N. Sandeep, Buoyancy induced model for the flow of 36 nm alumina-water nanofluid along upper horizontal surface of paraboloid of revolution with variable thermal conductivity and viscosity, Powder Technology, 301 (2016) 858-867.
DOI: 10.1016/j.powtec.2016.07.023
Google Scholar
[37]
I. L. Animasaun, Double diffusive unsteady convective micropolar flow past a vertical porous plate moving through binary mixture using modified Boussinesq approximation, Ain Shams Engineering Journal, 7( 2) (2015) 755–765.
DOI: 10.1016/j.asej.2015.06.010
Google Scholar
[38]
A. J. Omowaye and I. L. Animasaun, Upper-convected maxwell fluid flow with variable thermo-physical properties over a melting surface situated in hot environment subject to thermal stratification, Journal of Applied Fluid Mechanics, 9(4) (2016).
DOI: 10.18869/acadpub.jafm.68.235.24939
Google Scholar