Application of Reverse Logistics for the Recycling of Polypropylene Waste and Oyster Shell

Article Preview

Abstract:

The increase in waste generation affects the daily lives of millions of people. This study is about the waste of the polypropylene and oyster shell. Some of the present research focuses on strategic proactive measures incorporating life cycle analysis, and others on end-of-pipe, traditional waste management technology evaluations. In all recovery actions, economic benefits are related with direct and indirect gains. Decreasing the use of raw materials and waste materials, obtaining valuable spare parts and other financial opportunities like second hand market are among direct gains. The objective is meet the waste of the polypropylene and oyster shell and measure the structure of reverse logistic to these waste. The structure of the reverse logistic is to increaser amount more volume the waste and to be viable to treatment. The study intend approach the chain reverse of the waste and show the limitation and opportunities this process. Is hoped to find the results of the characterization and discover what ways is possible to application.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

101-105

Citation:

Online since:

February 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Graczyk; K. Witkowski. Total Logistic Management. N. 4. (2011) PP. 43–55.

Google Scholar

[2] M. M. Oliveira; M. F. S. Gonçalves. Revista Espacios. Vol. 37 N. 25 (2016) P 17.

Google Scholar

[3] WRAP. Realising the value of recovered plastics. Technical report, Waste and Resource Action Program, UK. (2007).

Google Scholar

[4] Arena U, Mastellone ML, Perugini F. Int J Life Cycle Assess 8(2). (2003). 92–98.

Google Scholar

[5] Wong C. A study of plastic recycling supply chain. Technical report. University of Hull Business School and Logistics Institute. (2010).

Google Scholar

[6] Astrup T, Fruergaard T, Ghristensen TH. Waste Manag Res 27. (2009). 763–772.

Google Scholar

[7] Ambrose CA, Hooper R, Potter AK, Singh MM. Resour Conserv Recycl 36(4). (2002). 309–318.

Google Scholar

[8] Heng N, Ungul LU, Mehrdadi N. Int J Environ Res 2(1). (2008) 27–36.

Google Scholar

[9] Jahre M. Int J Phys Distribution Logistic Management. 25 (2). (1995). 39–55.

Google Scholar

[10] Mori, K., 2014. Recycling of Waste Oyster Shells: Production of Clean and Bactericidal Drinking Water. http://www.fftc.agnet.org/files/lib_articles/20140325103938/ bc54001.pdf.

Google Scholar

[11] Lee, J.Y.; Lee, C.H.; Ha, B.H.; Kim, S.C.; Lee, D.K.; Kim, P.J. Korean J. Soil Sci. Fertil. 38, (2005). 281–286.

Google Scholar

[12] Nader Nciri ID , Taesub Shin, Haksoo Lee and Namjun Cho. Applied. Science. 8, (2018) 415.

Google Scholar

[13] Monita, Oliviaa; Annisa, Arifandita Mifshellaa; Lita, Darmayanti. Procedia Engineering 125 (2015) 760–764.

Google Scholar

[14] Wen-Ten Kuo, Her-Yung Wang, Chun-Ya Shu, De-Sin Su. Construction and Building Materials 46 (2013):128-133.

Google Scholar

[15] Witkowski K., The Innovations For Sustainable Development, 17th International Scientific Conference CO-MAT-TECH, Trnava-Bratislava (2009).

Google Scholar

[16] Rogers, D.S., Tibben-lembke, R. Journal of Business Logistics, Vol. 22, No.2, (2001). pp.129-148.

Google Scholar

[17] RevLog (1998-). Revlog, the european working group on reverse logistics. http://www.fbk.eur.nl/OZ/REVLOG.

Google Scholar

[18] Reloop (1998-). Reloop, Reverse Logistics Chain Optimization. http://www.kuleuven.ac.be/cib/projkt03.htm.

Google Scholar

[19] Dowlatshahi, S. International Journal of Production Research, 43(16), (2005) pp.3455-3480.

Google Scholar

[20] Díaz, A., Álvarez, M., González, P. Logística Inversa y Medio Ambiente, McGraw Hill, Madrid. (2004).

Google Scholar

[21] Sobotcka, Anna. Sagan, Joanna. Baranowska, Magdalena. Mazur, Ewelina. Procedia Engineering. 2-8 (2017) 151-159.

Google Scholar

[22] Thierry, M., Salomon, M., Nunen, J., Wassenhove, L. Strategic Issues in Product Recovery Management. (1995). California Management Review, vol.37, no.2, pp.114-135.

DOI: 10.2307/41165792

Google Scholar

[23] De Brito, M., Dekker, R. (2004). A framework for reverse logistics. In Reverse Logistics. Quantitative Models for Closed-Loop Supply Chains, edited by R. Dekker, M. Fleischmann, K. Inderfurth and L.N. Van Wassenhove, p.3–27. (Springer-Verlag, Germany).

DOI: 10.1007/978-3-540-24803-3_2

Google Scholar

[24] Peters, F.H.J. Scooter logistics from a Cradle-to-cradle perspective, Master Thesis Project, Delft University of Technology, Amsterdam. (2009).

Google Scholar

[25] M. F. S. Goncalves,; B. C. Groppo,; M. C. Terence,; C. Luchezzi. Avaliação dos resíduos de construção civil e demolição na grande São Paulo. XXXVII ENCONTRO NACIONAL DE ENGENHARIA DE PRODUCAO. Joinville, SC, Brasil, 10 a 13 de Outubro de (2017).

DOI: 10.14488/enegep2017_tn_sto_246_426_34346

Google Scholar

[26] Fleischmann, M. Quantitive Models for Reverse Logistics, Springer-Verlag-Berlin-Heidelberg-Newyork. (2001).

Google Scholar

[27] Cai Hongzhen; Yang Keyan; Yi Weiming. Int J Agric & Biol Eng. Vol. 10 No.1. (2017). P. 184.

Google Scholar