Lithium Diffusion in Amorphous LixSi (x ≤ 0.4) Materials

Article Preview

Abstract:

Lithium-silicon compounds are promising materials as negative electrodes in Li-ion-batteries. The diffusion of Li in electrode materials is important for charging/discharging rates, maximum specific capacity and possible side reactions. In order to further the development of novel negative electrode materials for lithium-ion batteries, understanding the basic principles of atomic transport is of high importance. Thin LixSi films were investigated, which were produced by reactive ion-beam co-sputtering of segmented elemental Li and Si targets. Li tracer self-diffusion experiments were done on LixSi|6LixSi heterostructures and 6Li and 7Li isotopes depth profiles were analysed by secondary ion mass spectrometry before and after annealing. Diffusivities were extracted by comparing the experimental depth profiles to analytical solutions of the diffusion equation. The diffusivities for low Li concentrations x < 0.1 in LixSi follow the Arrhenius law between 140 and 325 °C with an activation energy of 1.4 eV. A trap-limited diffusion mechanism is suggested, comparable to hydrogen diffusion in hydrogenated amorphous silicon. In contrast, for x ≈ 0.4 complete isotope interdiffusion is observed directly after deposition at room temperature. These results indicate a significant acceleration of diffusion with increasing Li content as suggested in literature by theoretical calculations [1].

You might also be interested in these eBooks

Info:

Periodical:

Pages:

88-94

Citation:

Online since:

February 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H.-H. Chiang, J.-M. Lu and C.-L. Kuo, J. Chem. Phys. 144, 34502 (2016).

Google Scholar

[2] S. Rodrigues, F. Faria, A. R. Ivaki, N. Cafôfo, X. Chen, H. Mata-Lima and F. Morgado-Dias, International Journal of Power and Energy Systems 36 (2016).

DOI: 10.2316/journal.203.2016.1.203-6218

Google Scholar

[3] K. E. Aifantis, ed., High energy density lithium batteries. Materials, engineering, applications (Wiley-VCH-Verl., Weinheim, 2010).

Google Scholar

[4] J. B. Goodenough and K.-S. Park, J. Am. Chem. Soc. 135, 1167 (2013).

Google Scholar

[5] V. Etacheri, R. Marom, R. Elazari, G. Salitra and D. Aurbach, Energy Environ. Sci. 4, 3243 (2011).

DOI: 10.1039/c1ee01598b

Google Scholar

[6] J. Chen und F. Cheng, Accounts of chemical research 42, 713 (2009).

Google Scholar

[7] L. Lu, X. Han, J. Li, J. Hua and M. Ouyang, Journal of Power Sources 226, 272 (2013).

Google Scholar

[8] A. Manthiram, A. V. Murugan, A. Sarkar and T. Muraliganth, Energy Environ. Sci. 1, 621 (2008).

Google Scholar

[9] A. Patil, V. Patil, D. Wook Shin, J.-W. Choi, D.-S. Paik and S.-J. Yoon, Materials Research Bulletin 43, 1913 (2008).

DOI: 10.1016/j.materresbull.2007.08.031

Google Scholar

[10] P. G. Bruce, B. Scrosati and J.-M. Tarascon, Angewandte Chemie (International ed. in English) 47, 2930 (2008).

Google Scholar

[11] M. T. McDowell, S. W. Lee, W. D. Nix and Y. Cui, Adv. Mater. Weinheim 25, 4966 (2013).

Google Scholar

[12] C. Wang, H. Wu, Z. Chen, M. T. McDowell, Y. Cui and Z. Bao, Nature chemistry 5, 1042 (2013).

Google Scholar

[13] S. Bourderau, T. Brousse and D.M. Schleich, Journal of Power Sources 81-82, 233 (1999).

Google Scholar

[14] H. Jung, M. Park, S. H. Han, H. Lim and S.-K. Joo, Solid State Communications 125, 387 (2003).

Google Scholar

[15] S. Ohara, J. Suzuki, K. Sekine and T. Takamura, Journal of Power Sources 136, 303 (2004).

Google Scholar

[16] T. Moon, C. Kim and B. Park, Journal of Power Sources 155, 391 (2006).

Google Scholar

[17] V. Baranchugov, E. Markevich, E. Pollak, G. Salitra and D. Aurbach, Electrochemistry Communications 9, 796 (2007).

DOI: 10.1016/j.elecom.2006.11.014

Google Scholar

[18] S. D. Beattie, M. J. Loveridge, M. J. Lain, S. Ferrari, B. J. Polzin, R. Bhagat and R. Dashwood, Journal of Power Sources 302, 426 (2016).

DOI: 10.1016/j.jpowsour.2015.10.066

Google Scholar

[19] J. Zhao, Z. Lu, N. Liu, H.-W. Lee, M. T. McDowell and Y. Cui, Nature communications 5, 5088 (2014).

Google Scholar

[20] Lü Rong-Guan, Yang Jun, Wang Jiu-Lin, Nuli Yan-Na, Acta Physico-Chimica Sinica 27, 759 (2011).

Google Scholar

[21] A. Zhamu et al., Graphene-enhanced anode particulates for lithium ion batteries, No. US20120064409 A1 (2010).

Google Scholar

[22] J. Wu, Meet. Abstr. MA2014-01, 196 (2014).

Google Scholar

[23] J. E. Cloud, Y. Wang, X. Li, T. S. Yoder, Y. Yang and Y. Yang, Inorganic chemistry 53, 11289 (2014).

Google Scholar

[24] N. Ding, J. Xu, Y. X. Yao, G. Wegner, X. Fang, C. H. CHen and I. Lieberwirth, Solid State Ionics 180, 222 (2009).

DOI: 10.1016/j.ssi.2008.12.015

Google Scholar

[25] J. Xie, N. Imanishi, T. Zhang, A. Hirano, Y. Takeda and O. Yamamoto, Materials Chemistry and Physics 120, 421 (2010).

Google Scholar

[26] J. Li, X. Xiao, F. Yang, M. W. Verbrugge and Y.-T. Cheng, J. Phys. Chem. C 116, 1472 (2011).

Google Scholar

[27] X. Xiao, P. Liu, M. W. Verbrugge, H. Haftbaradaran and H. Gao, Journal of Power Sources 196, 1409 (2011).

Google Scholar

[28] T. L. Kulova, A. M. Skundin, Y.V. Pleskov, E. I. Terukov and O. I. Kon'kov, Journal of Electroanalytical Chemistry 600, 217 (2007).

DOI: 10.1016/j.jelechem.2006.07.002

Google Scholar

[29] A. A. Arie and J. K. Lee, Phys. Scr. 2010, 14013 (2010).

Google Scholar

[30] K. Yoshimura, J. Suzuki, K. Sekine and T. Takamura, Journal of Power Sources 146, 445 (2005).

Google Scholar

[31] F. Strauß, L. Dörrer, M. Bruns and H. Schmidt, J. Phys. Chem. C 122, 6508 (2018).

Google Scholar

[32] F. Strauß, E. Hüger, P. Heitjans, V. Trouillet, M. Bruns and H. Schmidt, RSC Adv. 5, 7192 (2014).

DOI: 10.1039/c4ra14458a

Google Scholar

[33] J. Crank, The mathematics of diffusion (Oxford university press, 1979).

Google Scholar

[34] H. Mehrer, Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes (Springer Berlin Heidelberg, 2007).

Google Scholar

[35] E. Hüger, L. Dörrer and H. Schmidt, Chem. Mater. 30, 3254 (2018).

Google Scholar

[36] J. C. Larue, Phys. Stat. Sol. (a) 6, 143 (1971).

Google Scholar

[37] E. M. Pell, Phys. Rev. 119, 1222 (1960).

Google Scholar