Effect of Intermediate Heat Treatment on the Formation and Structure of Superconducting Layers in Multifilamentary Nb3Sn- Based Wires

Article Preview

Abstract:

In the present study, the Nb3Sn-based multifilamentary wires with coupled Nb filaments have been investigated by SEM and TEM after various regimes of intermediate annealing including short high-temperature heat treatments and after two-staged diffusion annealing. The formation of some amount of pre-reacted Nb3Sn layers has been revealed in all the wires studied, and their amount depends on the wire diameter, temperature and duration of the intermediate heat treatment. The structure of final diffusion layers is also affected by the regimes of these preliminary treatments. This research enables the revealing of the optimal heat treatment schedules for the formation of most perfect nanocrystalline structure of superconducting layers ensuring the highest critical current densities.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

239-245

Citation:

Online since:

February 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Shikov, V. Pantsyrny, A. Vorobieva, E. Dergunova, L. Vogdaev, N. Kozlenkova, K. Mareev, V. Tronza, V. Sytnikov, A. Taran and A. Rychagov: IEEE Trans. Appl. Supercond. Vol. 19 (2009), pp.1466-1469.

DOI: 10.1109/tasc.2009.2018055

Google Scholar

[2] G. L. Sabbi, L. Bottura, D.W. Cheng, D.R. Dietderich, P. Ferracin, A. Godeke, S.A. Gourlay, M. Marchevsky, E. Todesco and X. Wang: IEEE Trans. Appl. Supercond. Vol. 25(3) (2015), 4001407.

DOI: 10.1109/tasc.2014.2365471

Google Scholar

[3] A. Ballarino and L. Bottura: IEEE Trans. Appl. Supercond. Vol. 25(3) 2015, 6000906.

Google Scholar

[4] M.C. Jewell, P.J. Lee and D.C. Larbalestier: Supercond. Sci. Tech. Vol. 16 (2003), pp.1005-1011.

Google Scholar

[5] M.J.R. Sandim, D. Tytko, A. Kostka, P. Choi, S. Awaji, K. Watanabe and D. Raabe: Supercond. Sci. Tech. Vol. 26 (2013), 055008.

DOI: 10.1088/0953-2048/26/5/055008

Google Scholar

[6] I. Deryagina, E. Popova, E. Patrakov, E. Valova-Zaharevskaya, I. Abdyukhanov, A. Tsapleva and M. Alexeev : IEEE Trans. Appl. Supercond. Vol. 28(4) 2018, 6000505.

DOI: 10.1109/tasc.2018.2791532

Google Scholar

[7] P.J. Lee and D.C. Larbalestier: Cryogenics Vol. 48 (2008), pp.283-292.

Google Scholar

[8] E.I. Plaschkin, E.V. Nikulenkov, N.I. Salunin, A.K. Shikov, G.P. Vedernikov, V.S. Belyaev, O.V. Malafeeva, A.E. Vorobieva and A.G. Silaev: RF Patent No 2152657, 2000. Available: http://bd.patent.su/2152000-2152999/pat/servl/servlet7e91.html.

DOI: 10.1109/77.784655

Google Scholar

[9] D. Uglietti, V. Abächerli and R. Flükiger: IEEE Trans. Appl. Supercond. Vol. 17, No. 2 (2007), pp.2615-2618.

Google Scholar

[10] C. Senatore, V. Abächerli, M. Cantoni and R. Flükiger: Supercond. Sci. Technol. Vol. 20 (2007), p. S217–222.

Google Scholar

[11] E.N. Popova and I.L. Deryagina: Diffusion Foundations Vol. 5 (2015), pp.199-228.

Google Scholar