On the Physics of Anomalies of Boron Nanosegregation at Dislocations in FeAl

Article Preview

Abstract:

We present results of the constructive critical analysis and interpretation of some recent studies (Blavette, Sauvage, Wilde and others) at the atomic scale (using three-dimensional atom-probe field-ion microscopy) of impurity nanosegregation at dislocations, including “Cottrell atmospheres”, and grain boundaries in deformed intermetallics and metallic materials, and their relevance to mechanical properties and diffusion processes.

You might also be interested in these eBooks

Info:

[1] E. Cadel, A. Fraczkiewicz, D. Blavette. Atomic scale observation of Cottrell atmospheres in B-doped FeAl (B2) by 3D atom probe field ion microscopy. Mater. Sci. & Engineering A, 309-310 (2001) 32-37.

DOI: 10.1016/s0921-5093(00)01688-9

Google Scholar

[2] Yu.S. Nechaev. The distribution of carbon in steels. Physics-Uspekhi, 54 (2011) 465-471.

Google Scholar

[3] J. Wilde, A. Cerezo, G.D.W. Smith. Three-dimensional atomic-scale mapping of a Cottrell atmosphere around a dislocation in iron. Scripta Materialia, 43 (1), (2000) 39-48.

DOI: 10.1016/s1359-6462(00)00361-4

Google Scholar

[4] F. Danoix, D. Julien, X. Sauvage, J. Copreaux. Direct evidence of cementite dissolution in drawn perlite steels bserved by tomographic tom robe. Mater. Sci. & Engineering A, 250 (1), (1998) 8-13.

DOI: 10.1016/s0921-5093(98)00529-2

Google Scholar

[5] B.A. Gnesin. Thesis for the degree of Doctor of Technical Sciences, Moscow (2015) (http://www.chermet.net).

Google Scholar

[6] Yu.S. Nechaev. On specific phase transitions to the compound-like impurity nanosegregation structures at dislocations and GBs in metals and their influence on diffusion-assisted processes. Solid State Phenomenon, 138 (2008) 91-118.

DOI: 10.4028/www.scientific.net/ssp.138.91

Google Scholar

[7] Yu.S. Nechaev. On the carbon kinetics in martensite, relevance to nanosegregation at dislocations and grain boundaries. 30 (2017), (http://diffusion.uni-leipzig.de/contents_vol30.php).

Google Scholar

[8] V.S. Pokatilov, V.V. Pokatilov N.B. Dyakonova. Local structure of amorphous and microcrystalline FeB alloys. Bulletin of the Russian Academy of Sciences: Physics. 71 (11), (2007) 1589-1591.

DOI: 10.3103/s1062873807110366

Google Scholar

[9] I. Vincze, D.S. Boudreaux, M. Tegze. Short-range order in Fe-B metallic glass alloys. Phys. Rev. B. 19 (10), (1979) 4896-4900.

DOI: 10.1103/physrevb.19.4896

Google Scholar

[10] V.S. Pokatilov, N.B. Dyakonova. Experimental evidences of clusters with different short rang order in amorphous alloys. Hyperfine Interaction, 59 (1-4), (1990) 525-528.

DOI: 10.1007/bf02401288

Google Scholar

[11] V.S. Pokatilov. NMR study of rapidly quenched crystalline and amorphous Fe-B alloys. Physics of the solid state, 49 (12), (2007) 2217-2222.

DOI: 10.1134/s1063783407120013

Google Scholar

[12] Y.D. Zhang, J.I. Budnick, J.C. Ford, W.A. Hines. Some applications of NMR to the study of magnetically-ordered materials with emphasis on the short-range order in (Fe-B)-based crystalline and amorphous alloys. J. Magnetism and Magnetic Materials, 100 (1-3), (1991) 13-37.

DOI: 10.1016/0304-8853(91)90810-w

Google Scholar