[1]
J.B. Silva. Simulation and Experimentation of Drying Ceramic Bricks (In portuguese). Doctoral Thesis in Process Engineering, Federal University of Campina Grande, Campina Grande, Brazil (2009), 173p. (In portuguese).
DOI: 10.21475/ajcs.2016.10.10.p7455
Google Scholar
[2]
J.B. Silva, G.S. Almeida, W.C.P.B. Lima, G.A. Neves, A.G.B. Lima, Heat and mass diffusion including shrinkage and hygrothermal stress during drying of holed ceramics bricks, Def. Diff. Forum, (312-315) (2011) 971-976.
DOI: 10.4028/www.scientific.net/ddf.312-315.971
Google Scholar
[3]
F. Augier, W.J. Coumans, A. Hugget, E.F. Kaasschieter. On the risk of cracking in clay drying. Chem. Eng. J. 86 (2002) 133–138.
Google Scholar
[4]
W.P. Silva, C.M.D.P.S. Silva, L.D. Silva, V.S.O. Farias. Drying of clay slabs: Experimental determination and prediction by two-dimensional diffusion models, Ceram. Int. 39 (2013) 7911–7919.
DOI: 10.1016/j.ceramint.2013.03.053
Google Scholar
[5]
A.J.J. van der Zanden, A.M.E. Schoenmakers, P.J.A.M. Kerkhof, Isothermal vapour and liquid transport inside clay during drying, Drying Technol. 14(3-4) (1996) 647-676.
DOI: 10.1080/07373939608917119
Google Scholar
[6]
M.K.T. Brito, D.B.T. Almeida, A.G.B. Lima, L.A. Rocha, E.S. Lima, V.A.B. Oliveira. Heat and mass transfer during drying of clay ceramic materials: A three-dimensional analytical study. Diff. Found. (10) (2016) 93-106.
DOI: 10.4028/www.scientific.net/df.10.93
Google Scholar
[7]
W.P. Silva, C.M.D.P.S. Silva, L.D. Silva, V.S.O. Farias. Drying of clay slabs: Experimental determination and prediction by two-dimensional diffusion models. Ceram. Int. (39) (2013) 7911-7919.
DOI: 10.1016/j.ceramint.2013.03.053
Google Scholar
[8]
W. P. Silva, V. S. O. Farias, G. A. Neves, A. G. B. Lima. Modeling of water transport in roof tiles by removal of moisture at isothermal conditions, Heat Mass Transf. 48 (2012) 809–821.
DOI: 10.1007/s00231-011-0931-4
Google Scholar
[9]
G.S. Almeida, J.B. Silva, C.J. Silva, R. Swarnakar, G.A. Neves, A.G.B. Lima, Heat and mass transport in an industrial tunnel dryer: Modeling and simulation applied to hollow bricks, Appl. Therm. Eng., 55(1-2) (2013) 78-86.
DOI: 10.1016/j.applthermaleng.2013.02.042
Google Scholar
[10]
F.V.S. Tavares, S.R. Farias Neto, E.S. Barbosa, A.G.B. de Lima, C.J.B. Silva, Drying of ceramic hollow bricks in an industrial tunnel dryer: A finite volume analysis, Int. J. Multiphys. 8(3) (2014) 297-311.
DOI: 10.1260/1750-9548.8.3.297
Google Scholar
[11]
J.J.S. Nascimento, G. A. Neves, F. A. Belo, A. G. B. de Lima. Simultaneous heat and moisture transfer and shrinkage during drying of ceramic materials. Proceedings of the 14th International Drying Symposium (IDS 2004), São Paulo, Brazil, A (2004) 501-509.
Google Scholar
[12]
G.S. Almeida. Simulation and Experimentation of Red Ceramic Drying in Industrial Thermal Systems. Doctoral Thesis in Process Engineering, Federal University of Campina Grande, Campina Grande, Brazil (2009), 189p. (In portuguese).
DOI: 10.21475/ajcs.2016.10.10.p7455
Google Scholar
[13]
Y.A. Çengel, A.J. Ghajar, A.J., 2012. Heat and Mass Transfer, AMGH, Porto Alegre, Brazil, 2012. (In portuguese).
Google Scholar