Defect and Diffusion Forum
Vol. 401
Vol. 401
Defect and Diffusion Forum
Vol. 400
Vol. 400
Defect and Diffusion Forum
Vol. 399
Vol. 399
Defect and Diffusion Forum
Vol. 398
Vol. 398
Defect and Diffusion Forum
Vol. 397
Vol. 397
Defect and Diffusion Forum
Vol. 396
Vol. 396
Defect and Diffusion Forum
Vol. 395
Vol. 395
Defect and Diffusion Forum
Vol. 394
Vol. 394
Defect and Diffusion Forum
Vol. 393
Vol. 393
Defect and Diffusion Forum
Vol. 392
Vol. 392
Defect and Diffusion Forum
Vol. 391
Vol. 391
Defect and Diffusion Forum
Vol. 390
Vol. 390
Defect and Diffusion Forum
Vol. 389
Vol. 389
Defect and Diffusion Forum Vol. 395
Paper Title Page
Abstract: The growing pressure on tool performance and durability increases demands on the materials used and on the choice of optimal heat treatment. The properties of tool steels produced by conventional and powder metallurgy (1.2379, Vanadis 23) were compared after different heat treatment modes. Cryogenic treatment was performed in several batches for 4 hours at-90°C or-196°C. Cryogenic treatment was inserted between quenching and tempering. Mechanical properties were evaluated by hardness tests and three-point bending strength and wear resistance by Pin-on-disk tests. Metallographic analysis was performed using light and electron microscopy. On the basis of the results obtained both materials were subject to selected heat treatment and experimental forming tools produced which were used in operation. During operation the wear of the tools (shape change and volume loss) was assessed. Results of the laboratory tests were then compared with operation tests.
113
Abstract: N-Quench, which is a new surface heat treatment to infiltrate nitrogen into steel parts followed by quenching to achieve hardening, is gathering attention in the nitriding field as it affords low distortion while maintaining a higher effective case depth (ECD) compared with conventional nitriding. N-Quench is conducted mainly between 680°C and 800°C, where the two-phase region of ferrite and austenite exists in the Fe-N phase diagram. However, a few studies have reported on nitriding at temperatures higher than 800°C due to decomposition of NH3, which is a key source of nitrogen infiltration. Our results revealed that in a conventional furnace such as resistance heating furnace, no nitrogen infiltrated the specimen at 930°C, which is the general carburizing temperature. On the other hand, in the infrared heating furnace, nitrogen infiltrated the specimen at 930°C successfully with lesser NH3 introduction than that required by the conventional furnace. Therefore, in this study, the limit of NH3 decomposition is assessed and possibility of extending the applicability of N-Quench, especially increasing the ECD while maintaining a low distortion, is examined.
124