[1]
CAMPBELL, F. Elements of metallurgy and engineering alloys. Materials Park, Ohio: ASM International, 2008. ISBN 978-0-87170-867-0.
Google Scholar
[2]
TOTTEN, George. Steel heat treatment: metallurgy and technologies. 2nd ed. Boca Raton, FL, 2007. ISBN 978-0-8493-8455-4.
Google Scholar
[3]
GRINDER, Olle. The HIP way to make cleaner, better steels. Metal Powder Report. 2007, 62(9), 16-22.
DOI: 10.1016/s0026-0657(07)70190-x
Google Scholar
[4]
SURBERG, Cord, Paul STRATTON a Klaus LINGENHÖLE. The effect of some heat treatment parameters on the dimensional stability of AISI D2. Cryogenics. 2008, 48(1-2), 42-47.
DOI: 10.1016/j.cryogenics.2007.10.002
Google Scholar
[5]
DAS, Debdulal, Apurba DUTTA a Kalyan RAY. Sub-zero treatments of AISI D2 steel: Part I. Microstructure and hardness. Materials Science and Engineering: A. 2010, 527(9), 2182-2193.
DOI: 10.1016/j.msea.2009.10.070
Google Scholar
[6]
DAS, Debdulal, Rajdeep SARKAR, Apurba DUTTA a Kalyan RAY. Influence of sub-zero treatments on fracture toughness of AISI D2 steel. Materials Science and Engineering: A. 2010, 528(2), 589-603.
DOI: 10.1016/j.msea.2010.09.057
Google Scholar
[7]
BALDISSERA, P. a C. DELPRETE. Deep Cryogenic Treatment: A Bibliographic Review. The Open Mechanical Engineering Journal. 2008, 2(1), 1-11.
DOI: 10.2174/1874155x00802010001
Google Scholar
[8]
SOBOTOVÁ, J., M. KUŘÍK, Z. KOLÁŘ a P. PRIKNEROVÁ. Effect of Conditions of Cryogenic Treatment on the Properties of Selected Cold Work Tool Steels. HTM Journal of Heat Treatment and Materials [online]. 2017, 72(2), 99-103 [cit. 2018-08-27].
DOI: 10.3139/105.110318
Google Scholar
[9]
GHASEMI-NANESA, Hadi a Mohammad JAHAZI. Simultaneous enhancement of strength and ductility in cryogenically treated AISI D2 tool steel. Materials Science and Engineering: A. 2014, 598, 413-419.
DOI: 10.1016/j.msea.2014.01.065
Google Scholar
[10]
LESKOVŠEK, V., M. KALIN a J. VIŽINTIN. Influence of deep-cryogenic treatment on wear resistance of vacuum heat-treated HSS. Vacuum. 2006, 80(6), 507-518.
DOI: 10.1016/j.vacuum.2005.08.023
Google Scholar
[11]
AKINCIOğLU, Sıtkı, Hasan GÖKKAYA a İlyas UYGUR. A review of cryogenic treatment on cutting tools. The International Journal of Advanced Manufacturing Technology. 2015, 78(9-12), 1609-1627.
DOI: 10.1007/s00170-014-6755-x
Google Scholar
[12]
GILL, Simranpreet, Jagdev SINGH, Rupinder SINGH a Harpreet SINGH. Effect of Cryogenic Treatment on AISI M2 High Speed Steel: Metallurgical and Mechanical Characterization. Journal of Materials Engineering and Performance. 2012, 21(7), 1320-1326.
DOI: 10.1007/s11665-011-0032-z
Google Scholar
[13]
LI, Haizhi, Weiping TONG, Junjun CUI, Hui ZHANG, Liqing CHEN a Liang ZUO. The influence of deep cryogenic treatment on the properties of high-vanadium alloy steel. Materials Science and Engineering: A. 2016, 662, 356-362.
DOI: 10.1016/j.msea.2016.03.039
Google Scholar
[14]
DAS, D., A.K. DUTTA a K.K. RAY. Influence of varied cryotreatment on the wear behavior of AISI D2 steel. Wear. 2009, 266(1-2), 297-309.
DOI: 10.1016/j.wear.2008.07.001
Google Scholar
[15]
KHUN, Nay, Erjia LIU, Adrian TAN, D. SENTHILKUMAR, Bensely ALBERT a D. MOHAN LAL. Effects of deep cryogenic treatment on mechanical and tribological properties of AISI D3 tool steel. Friction. 2015, 3(3), 234-242.
DOI: 10.1007/s40544-015-0089-z
Google Scholar
[16]
PILLAI, Nandakumar, R KARTHIKEYAN, Sathish KANNAN a S. VINCENT. Effect of Cryogenic treatment on VIKING cold working tool steel and development of wear mechanism maps. Procedia Manufacturing. 2018, 26(), 329-342.
DOI: 10.1016/j.promfg.2018.07.041
Google Scholar
[17]
LI, Junji, Xianguo YAN, Xiaoyang LIANG, Hong GUO a D.Y. LI. Influence of different cryogenic treatments on high-temperature wear behavior of M2 steel. Wear [online]. 2017, 376-377, 1112-1121 [cit. 2018-12-09].
DOI: 10.1016/j.wear.2016.11.041
Google Scholar
[18]
STRATTON, P.F. Optimising nano-carbide precipitation in tool steels. Materials Science and Engineering: A. 2007, 449-451, 809-812.
DOI: 10.1016/j.msea.2006.01.162
Google Scholar
[19]
LIU, Shangtan, Xiaochun WU, Lei SHI, Yiwen WU a Wei QU. Influence of Cryogenic Treatment on Microstructure and Properties Improvement of Die Steel. Journal of Materials Science and Chemical Engineering. 2015, 03(09), 37-46.
DOI: 10.4236/msce.2015.39005
Google Scholar
[20]
SOBOTOVÁ, Jana, Martin KUŘÍK a Jiří CEJP. Influence of Heat Treatment Conditions on Properties of High-Speed P/M Steel Vanadis 30. Key Engineering Materials. 2015, 647, 17-22.
DOI: 10.4028/www.scientific.net/kem.647.17
Google Scholar
[21]
PENG, Hanlin, Ling HU, Liejun LI, Liyun ZHANG a Xianglin ZHANG. Evolution of the microstructure and mechanical properties of powder metallurgical high-speed steel S390 after heat treatment. Journal of Alloys and Compounds. 2018, 740, 766-773.
DOI: 10.1016/j.jallcom.2017.12.264
Google Scholar
[22]
SOBOTOVÁ, Jana, Martin KUŘÍK a Jakub LACZA. Effect of Chemical Composition and Heat Treatment Parameters on the Structure and Properties of Vanadis 23 and Vanadis 30 PM High-Speed Steels. Solid State Phenomena. 2017, 270, 258-264.
DOI: 10.4028/www.scientific.net/ssp.270.258
Google Scholar
[23]
JURČI, Peter, Mária DOMÁNKOVÁ, Ľubomír ČAPLOVIČ et al. Microstructure and hardness of sub-zero treated and no tempered P/M Vanadis 6 ledeburitic tool steel. Vacuum [online]. 2015, 111, 92-101 [cit. 2018-12-09].
DOI: 10.1016/j.vacuum.2014.10.004
Google Scholar
[24]
SOBOTOVA, Jana, Petr JURCI a Ivo DLOUHY. The effect of subzero treatment on microstructure, fracture toughness, and wear resistance of Vanadis 6 tool steel. Materials Science and Engineering: A. 2016, 652, 192-204.
DOI: 10.1016/j.msea.2015.11.078
Google Scholar
[25]
PTAČINOVÁ, Jana, Viktória SEDLICKÁ, Mária HUDÁKOVÁ, Ivo DLOUHÝ a Peter JURČI. Microstructure – Toughness relationships in sub-zero treated and tempered Vanadis 6 steel compared to conventional treatment. Materials Science and Engineering: A [online]. 2017, 702, 241-258 [cit. 2018-12-09].
DOI: 10.1016/j.msea.2017.07.007
Google Scholar
[26]
Material datasheet, tool steel for cold working: 1.2379. -. Praha: -, (2006).
Google Scholar
[27]
GILL, Simranpreet, Jagdev SINGH, Rupinder SINGH a Harpreet SINGH. Metallurgical principles of cryogenically treated tool steels—a review on the current state of science. The International Journal of Advanced Manufacturing Technology. 2011, 54(1-4), 59-82.
DOI: 10.1007/s00170-010-2935-5
Google Scholar
[28]
KORADE, D.N., K.V. RAMANA, K.R. JAGTAP a N.B. DHOKEY. Effect of Deep Cryogenic Treatment on Tribological Behaviour of D2 Tool Steel - An Experimental Investigation. Materials today: Proceedings. 2017, 4(8), 7665-7673.
DOI: 10.1016/j.matpr.2017.07.100
Google Scholar
[29]
OPPENKOWSKI, A., S. WEBER a W. THEISEN. Evaluation of factors influencing deep cryogenic treatment that affect the properties of tool steels. Journal of Materials Processing Technology. 2010, 210(14), 1949-1955.
DOI: 10.1016/j.jmatprotec.2010.07.007
Google Scholar
[30]
SINGH, Gurnam, Simranpreet GILL a Manu DOGRA. Techno-economic analysis of blanking punch life improvement by environment friendly cryogenic treatment. Journal of Cleaner Production. 2017, 143(2017), 1060-1068.
DOI: 10.1016/j.jclepro.2016.12.013
Google Scholar
[31]
KUŘÍK, M., J. LACZA, T. VLACH a J. SOBOTOVÁ. Study of the properties and structure of selected tool steels for cold work depending on the parameters of heat treatment. Materiali in tehnologije. 2017, 51(4), 585-589.
DOI: 10.17222/mit.2016.120
Google Scholar
[32]
Material datasheet, tool steel for cold working: Vanadis 23. -. Sweden: -, 2014. Available from: http://www.uddeholm.com/files/PB_Uddeholm_vanadis_23_english.pdf.
DOI: 10.31399/asm.ad.ts0820
Google Scholar
[33]
ASTM G99-05(2010): Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus. 03.02. West Conshohocken: ASTM International, (2010).
Google Scholar
[34]
KALSI, Nirmal, Rakesh SEHGAL a Vishal SHARMA. Cryogenic Treatment of Tool Materials: A Review. Materials and Manufacturing Processes. 2010, 25(10), 1077-1100.
DOI: 10.1080/10426911003720862
Google Scholar
[35]
DA SILVA, Flávio, Sinésio FRANCO, Álisson MACHADO, Emmanuel EZUGWU a Antônio SOUZA. Performance of cryogenically treated HSS tools. Wear [online]. 2006, 261(5-6), 674-685 [cit. 2018-08-04].
DOI: 10.1016/j.wear.2006.01.017
Google Scholar
[36]
ČSN EN ISO 6508-1. Metallic materials - Rockwell hardness test. 2005. Prague: Czech Standards Institute, (2006).
Google Scholar