Influence of Operation Temperature on Rolling Bearings

Article Preview

Abstract:

Rolling bearings are among the most widely widespread components in the engineering industry. A critical issue is damage to functional surfaces of rolling bearings, which has arisen during the operation. An important area is the monitoring of production temperature and its impact on components. We undertook this study to damage of functional surfaces bearings. It was decided that the optimal procedure is comparing three samples, each with another type of damage. This procedure will aid determine the cause of damaged bearings. This work has shown the adverse effect of residual austenite and residual stresses caused by the production process on the dimensional stability of the bearing components.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

64-72

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Brusilová, Z. Gábrišová, Najčastejšie príčiny porušenia valivých ložísk, Tribotechnika. (2012).

Google Scholar

[2] K. Vasilko, Analytická teória trieskového obrábania, Prešov, s.395 až 398. (2007).

Google Scholar

[3] K. Vasilko, Z. Murčinková, Machinability as a Phenomenon and the Operational Methods of Its Determination. [J]. Manufacturing Technology, 18(2)321-324, (2018).

DOI: 10.21062/ujep/99.2018/a/1213-2489/mt/18/2/321

Google Scholar

[4] OVAKO, Steels for bearing production from Ovako, (2018), Information on http://www.ovako.com/Global/Downloads/Product_information/Ovako_Group/EN/Steels%20for%20Bearings%20from%20Ovako.pdf.

DOI: 10.31399/asm.ad.sa0583

Google Scholar

[5] G. H. Jang, et. al., Analysis of Dynamic Characteristics of an HDD Spindle System Supported by Ball Bearing due to Temperature Variation. Microsystem Technologies. 9 (2003). 4. pp.243-249.

DOI: 10.1007/s00542-002-0260-0

Google Scholar

[6] M. Jevtic, et. al., Numerical and Experimental Aspects of Thermally Induced Vibration in Real Rotors. Thermal Science. 15. (2011). 2. pp.545-558.

DOI: 10.2298/tsci110314039j

Google Scholar

[7] P. Fabián, E. Kečková, P. Beták, Tepelné spracovanie kovov, Žilina, (2007). s. 93.

Google Scholar

[8] J. Jech, Oceli na valivá ložiska a jejich tepelné zpracováni. Praha: SNTL. 1986. s.280.

Google Scholar

[9] KBM. 2018. Ihlové ložiská. Information on http://www.kbm.sk/stranka/ihlove-loziska/.

Google Scholar

[10] W. Li, et al. Wear Rate. Frictional Temperature. and Energy Consumption of Steel 52100 with Differ-ent Microstructures During Sliding. Journal of Material Sciences. 40 (2005). 21. pp.

DOI: 10.1007/s10853-005-1508-8

Google Scholar

[11] F. Nonato, K. L. Cavalca, An Approach for Including the Stiffness and Damping of Elastohydrodynam-ic Point Contacts in Deep Groove Ball Bearing Equilibrium Models. Journal of Sound and Vibration. 333 (2014). 25. pp.6960-6978.

DOI: 10.1016/j.jsv.2014.08.011

Google Scholar

[12] R. M. Mitrovič. et al., Effects of operation Temperature on Thermal Expansion and main Parameters of Radial ball Bearing. Thermal Science. Vol.19. No.5. pp.1835-1844, (2015).

DOI: 10.2298/tsci141223091m

Google Scholar

[13] A. P. Markopoulos, J. Kundrák, FEM/AI Models for the Simulation of Precision Grinding [J] Manufacturing Technology (2016), 16(2)384-390.

DOI: 10.21062/ujep/x.2016/a/1213-2489/mt/16/2/384

Google Scholar

[14] J. Yao, S. Lijian, H. Haibo. et al., Material Thermal Conductivity Determination and Structure Optimization of Ultra-precision Optical Machine Tool [J]. Journal of Mechanical Engineering. 2015(01): 167-175.

DOI: 10.3901/jme.2015.01.167

Google Scholar

[15] J. Zhang, CH. Feng, Y. Ma. el at., A Mechanistic Model for Prediction of Cutting Parameters in MicroScale Milling [J]. Manufacturing Technology. 2017. 17(3):412-418.

DOI: 10.21062/ujep/x.2017/a/1213-2489/mt/17/3/412

Google Scholar

[16] H. Wu, K. Wang, G. Sun, L. Zhao, Influence Study of Oil Film Thrust Bearing on Thermal Characteristics of High-speed Precision Roll Grinding Head [J]. Manufacturing Technology 2018. 18(2)330-336.

DOI: 10.21062/ujep/101.2018/a/1213-2489/mt/18/2/330

Google Scholar

[17] Information on http://www.bearingcorporation.com/bearing-failure/.

Google Scholar

[18] J. Takabi, M. Khonsari, Experimental Testing and Thermal Analysis of Ball Bearings. Tribology In-ternational. 60 (2013). Apr. pp.93-103.

DOI: 10.1016/j.triboint.2012.10.009

Google Scholar

[19] J. Shi, C. R. Liu, On Predicting Chip Morphology and Phase Transformation in Hard Machining. In ter-national Journal of dvanced Manufacturing Technology. 27 (2005). 7. pp.645-654.

DOI: 10.1007/s00170-004-2242-0

Google Scholar

[20] Information on https://www.skf.com/group/our-company/find-a-distributor/by-list/index.html.

Google Scholar

[21] B. Liščić, et al. Quenching Theory and Technology, 2nd Boca Raton: Taylor & Francis Group LLC. 2010. s. 97.

Google Scholar

[22] K. Semrad, Mechanizmy a časti. 2018. Information on http://web.tuke.sk/lf-kli/Semrad%20Karol/Mechanizmy%20a%20casti/05-Capy%20a%20loziska.pdf.

Google Scholar

[23] L. Václav, a spol., Trenie ložiska a ich mazanie. 2018. Information on http://www.tribotechnika.sk/tribotechnika-42009/trenie-loziska-a-ich-mazanie.html.

Google Scholar

[24] V. Oravčík, Poruchy valivých ložísk. 2018. Information on http://www.engineering.sk/images/stories/2013/10oktober/Stroj13_10_dobehy.pdf.

Google Scholar

[25] Pitted bearing, 2011, Information on http://www.differentials.com/wp-content/uploads/2011/12/Pitted-Bearing_0159.jpg.

Google Scholar

[26] R. Zahradníček. a kol., Materiály a komponenty, Košice (2015).

Google Scholar