[1]
P.F. Stratton, Optimising nano-carbide precipitation in tool steels. Mater. Sci. Eng. A449 – 451 (2007) 809 – 812.
DOI: 10.1016/j.msea.2006.01.162
Google Scholar
[2]
T.P. Sweeney, Deep cryogenics: the great cold debate. Heat Treating, 2 (1986) 28 – 33.
Google Scholar
[3]
D. Das, K.K. Ray, Structure-property correlation of sub-zero treated AISI D2 steel. Mater. Sci. Eng. A541 (2012) 45 – 60.
DOI: 10.1016/j.msea.2012.01.130
Google Scholar
[4]
D.N. Collins, Deep cryogenic treatment of tool steels - a review, Heat Treat. Met. 2 (1996) 40 – 42.
Google Scholar
[5]
D. Das, A.K. Dutta, K.K. Ray, Sub-zero treatments of AISI D2 steel: Part I. Microstructure and hardness. Mater. Sci. Eng. A527 (2010) 2182 – 2193.
DOI: 10.1016/j.msea.2009.10.070
Google Scholar
[6]
P. Jurči, M. Kusý, J. Ptačinová, V. Kuracina, P. Priknerová, Long-term Sub-zero Treatment of P/M Vanadis 6 Ledeburitic Tool Steel – a Preliminary Study. Manuf. Technol. 15 (2015) 41 – 47.
DOI: 10.21062/ujep/x.2015/a/1213-2489/mt/15/1/41
Google Scholar
[7]
P. Jurči, M. Dománková, L. Čaplovič, J. Ptačinová, J. Sobotová, P. Salabová, O. Prikner, B. Šuštaršič, D. Jenko, Microstructure and hardness of sub-zero treated and no tempered P/M Vanadis 6 ledeburitic tool steel. Vacuum 111 (2015) 92 – 101.
DOI: 10.1016/j.vacuum.2014.10.004
Google Scholar
[8]
A.I. Tyshchenko, W. Theisen, A. Oppenkowski, S. Siebert, O.N. Razumov, A.P. Skoblik, V.A. Sirosh, J.N. Petrov, V.G. Gavriljuk, Low-temperature martensitic transformation and deep cryogenic treatment of a tool steel. Mater. Sci. Eng. A527 (2010) 7027 – 7039.
DOI: 10.1016/j.msea.2010.07.056
Google Scholar
[9]
H. Li, W. Tong, J. Cui, H. Zhang, L. Chen, L. Zuo, The influence of deep cryogenic treatment on the properties of high-vanadium alloy steel, Mater. Sci. Eng. A662 (2016) 356 – 362.
DOI: 10.1016/j.msea.2016.03.039
Google Scholar
[10]
M. El Mehtedi, P. Ricci, L. Drudi, S. El Mohtadi, M. Cabibbo, S. Spigarelli, Analysis of the Effect of Deep Cryogenic Treatment on the Hardness and Microstructure of X30 CrMoN 15 1 Steel, Mater. Des. 33 (2012) 136 – 144.
DOI: 10.1016/j.matdes.2011.07.030
Google Scholar
[11]
W.N. Putra, P. Pramaditya, P. Pramuka, M.A. Mochtar, Effect of Sub-Zero Treatment on Microstructures, Mechanical Properties, and Dimensional Stability of AISI D2 Cold Work Tool Steel, Mater. Sci. Forum 929 (2018) 136 – 141.
DOI: 10.4028/www.scientific.net/msf.929.136
Google Scholar
[12]
F. Meng, K. Tagashira, R. Azuma, H. Sohma, Role of Eta-carbide Precipitation´s in the Wear Resistance Improvements of Fe-12Cr-Mo-V-1.4C Tool Steel by Cryogenic Treatment. ISIJ Int. 34 (1994) 205 - 210.
DOI: 10.2355/isijinternational.34.205
Google Scholar
[13]
P. Jurči, M. Dománková, M. Hudáková, J. Ptačinová, M. Pašák, P. Palček, Characterization of microstructure and tempering response of conventionally quenched, short- and long-time sub-zero treated PM Vanadis 6 ledeburitic tool steel. Mater. Charact. 134 (2017) 398 – 415.
DOI: 10.1016/j.matchar.2017.10.029
Google Scholar
[14]
J. Sobotová, P. Jurči, I. Dlouhý, The effect of sub-zero treatment on microstructure, fracture toughness, and wear resistance of Vanadis 6 tool steel. Mater. Sci. Eng. A652 (2016) 192 – 204.
DOI: 10.3390/met8121047
Google Scholar
[15]
D. Das, R. Sarkar, A.K. Dutta, K.K. Ray, Influence of sub-zero treatments on fracture toughness of AISI D2 steel. Mater. Sci. Eng. A528 (2010) 589 – 603.
DOI: 10.1016/j.msea.2010.09.057
Google Scholar
[16]
P. Jurči, M. Dománková, J. Ptačinová, M. Pašák, M. Kusý, P. Priknerová, Investigation of the Microstructural Changes and Hardness Variations of Sub-Zero Treated Cr-V Ledeburitic Tool Steel Due to the Tempering Treatment. J. Mater. Eng. Perform. 27 (2018) 1514 – 1529.
DOI: 10.1007/s11665-018-3261-6
Google Scholar
[17]
K.H. Schwalbe, On the influence of microstructure on crack propagation mechanisms and fracture toughness of metallic material, Eng. Fract. Mech. 9 (1977) 795 – 832.
DOI: 10.1016/0013-7944(77)90004-2
Google Scholar
[18]
A. Kokosza, J. Pacyna, Effect of retained austenite on the fracture toughness of tempered tool steel, Arch. Mater. Sci. Eng. 31 (2) (2008) 87 – 90.
Google Scholar
[19]
B. Podgornik, B. Zužek, V. Leskovsek, Experimental evaluation of tool steel fracture toughness using circumferentially notched and pre-cracked tension bar specimen, Mater. Perform. Charact. 3 (3) (2014) 1 – 17.
DOI: 10.1520/mpc20130045
Google Scholar
[20]
B. Podgornik, M. Sedlacek, M. Čekada, S. Jacobson, B. Zajec, Impact of fracture toughness on surface properties of PVD coated cold work tool steel, Surf. Coat. Technol. 277 (2015) 144 – 150.
DOI: 10.1016/j.surfcoat.2015.07.021
Google Scholar
[21]
H. Berns, C. Broeckmann, Fracture of hot formed ledeburitic chromium steels, Eng. Fract. Mech. 58 (4) (1997) 311 – 325.
DOI: 10.1016/s0013-7944(97)00118-5
Google Scholar
[22]
J. Ptačinová, V. Sedlická, M. Hudáková, I. Dlouhý, P. Jurči, Microstructure – Toughness relationships in sub-zero treated and tempered Vanadis 6 steel compared to conventional treatment. Mater. Sci. Eng., A702 (2017) 241 – 258.
DOI: 10.1016/j.msea.2017.07.007
Google Scholar
[23]
J. Ptačinová, P. Jurči, I. Dlouhý, Fracture toughness of ledeburitic Vanadis 6 steel after sub-zero treatment for 17 H and double tempering. Mater. Tehnol. 51 (2017) 729 – 733.
DOI: 10.17222/mit.2016.118
Google Scholar
[24]
V.G. Gavriljuk, W. Theisen, V.V. Sirosh, E.V. Polshin, A. Kortmann, G.S. Mogilny, Yu.N. Petrov, Y.V. Tarusin, Low-temperature martensitic transformation in tool steels in relation to their deep cryogenic treatment. Acta Mater. 61 (2013) 1705 – 1715.
DOI: 10.1016/j.actamat.2012.11.045
Google Scholar
[25]
M. Pašák, Study of the phase transformations kinetics in high alloy systems based on iron. PhD Thesis, Trnava: Faculty of Materials and Technology, Trnava, 2015. (In Czech).
Google Scholar
[26]
P. Bílek, J. Sobotová, P. Jurči, Evaluation of the Microstructural Changes in Cr-V Ledeburitic Tool Steel Depending on the Austenitization Temperature, Mater. Tehnol. 45 (2011) 489 – 493.
Google Scholar
[27]
ISO 12135: 2010. Metallic materials – determination of plane strain fracture toughness.
Google Scholar
[28]
M. Pellizzari, A. Molinari, Deep cryogenic treatment of cold work tool steel, in: J. Bergstrom, G. Fredriksson, M. Johansson, O. Kotik, F. Thuvander (Eds.), Proc. of the 6th Int. Tooling Conf, Karlstad University, Sweden, 2002, 547 – 558.
Google Scholar
[29]
D. Das, K.K. Ray, A.K. Dutta, Influence of temperature of sub-zero treatments on the wear behaviour of die steel, Wear 267 (2009) 1361 – 1370.
DOI: 10.1016/j.wear.2008.11.029
Google Scholar
[30]
C.H. Surberg, P. Stratton, K. Lingenhoele, The effect of some heat treatment parameters on the dimensional stability of AISI D2, Cryogenics 48 (2008) 42 – 47.
DOI: 10.1016/j.cryogenics.2007.10.002
Google Scholar
[31]
K. Amini, A. Akhbarizadeh, S. Javadpour, Investigating the effect of holding duration on the microstructure of 1.2080 tool steel during the deep cryogenic treatment, Vacuum 86 (2012) 1534 – 1540.
DOI: 10.1016/j.vacuum.2012.02.013
Google Scholar
[32]
K. Amini, A. Akhbarizadeh, S. Javadpour, Effect of deep cryogenic treatment on the formation of nano-sized carbides and the wear behaviour of D2 tool steel, Int. J. Miner. Metall. Mater. 19 (2012) 795 – 799.
DOI: 10.1007/s12613-012-0630-2
Google Scholar
[33]
A. Akhbarizadeh, S. Javadpour, Investigating the effect of as-quenched vacancies in the final microstructure of 1.2080 tool steel during the deep cryogenic heat treatment, Mater. Lett. 93 (2013) 247 – 250.
DOI: 10.1016/j.matlet.2012.11.081
Google Scholar
[34]
A. Akhbarizadeh, A. Shafyei, M.A. Golozar, Effects of cryogenic treatment on wear behaviour of D6 tool steel, Mater. Des. 30 (2009) 3259 – 3264.
DOI: 10.1016/j.matdes.2008.11.016
Google Scholar
[35]
D.N. Collins, Cryogenic treatment of tool steels, Adv. Mater. Process. 12 (1998) 24 – 29.
Google Scholar
[36]
S. Li, N. Min, L. Deng, X. Wu, Y. Min, H. Wang, Influence of deep cryogenic treatment on internal friction behaviour in the process of tempering, Mater. Sci. Eng. A528 (2011) 1247 – 1250.
DOI: 10.1016/j.msea.2010.10.012
Google Scholar
[37]
P. Jurči, J. Ptačinová, M. Hudáková, M. Dománková, M. Kusý, M. Sahul, Simultaneous Improvement of Wear Performance and Toughness of Ledeburitic Tool Steels by Sub-zero Treatment. In: Proc. of the 20th Int. Conf. on Metal Materials and Engineering. Copenhagen, Denmark, June 11 – 12, 2018, Ed. Waset, Copenhagen, 1059 – 1066.
DOI: 10.4028/www.scientific.net/kem.647.9
Google Scholar
[38]
A. Kulmburg, E. Putzgruber, F. Korntheurer, E. Kaiser, Beitrag zum Tiefkühlen von Schnellarbeitsstaehlen, HTM J. Heat Treat. Mater. 47 (1992) 318 – 323 (In German).
Google Scholar
[39]
A. Molinari, M. Pellizzari, S. Gialanella, G. Straffelini, K.H. Stiasny, Effect of deep cryogenic treatment on mechanical properties of tool steels, J. Mater. Proc. Technol. 118 (2001) 350 – 355.
DOI: 10.1016/s0924-0136(01)00973-6
Google Scholar
[40]
D.N. Collins, J. Dormer, Deep Cryogenic Treatment of a D2 Cold-Work Tool Steel, Heat Treat. Met. 24 (1997) 71 - 74.
Google Scholar
[41]
Y.M. Rhyim, S.H. Han, Y.S. Na, J.H. Lee, Effect of deep cryogenic treatment on carbide precipitation and mechanical properties of tool steel, Solid State Phenom. 118 (2006) 9 – 14.
DOI: 10.4028/www.scientific.net/ssp.118.9
Google Scholar
[42]
S.K. Putatunda, Fracture toughness of a high carbon and high silicon steel, Mater. Sci. Eng. A297 (2001) 31 – 43.
Google Scholar
[43]
N. Hansen, Hall-Petch relation and boundary strengthening, Scr. Mater. 51 (2004), 801 – 806.
DOI: 10.1016/j.scriptamat.2004.06.002
Google Scholar