Relationships between the Microstructure, Hardness and Fracture Toughness of Differently Sub-Zero Treated Tool Steel

Article Preview

Abstract:

A PM made Cr-V ledeburitic tool steel Vanadis 6 has been subjected to conventional austenitizing and quenching, which was followed by sub-zero treatment at different temperatures, and by tempering treatments. The microstructure, hardness and fracture toughness of sub-zero treated steel have been investigated with reference to the same material after conventional room temperature quenching. The main findings are that sub-zero treatments reduce the retained austenite amount, enhance the population density of small carbides, refine the martensite and change the precipitation of carbides during tempering. These alterations are reflected in elevated hardness after low-temperature tempering but slightly lowered hardness after tempering within the normal secondary hardening temperature range, except the specimens treated at-140 °C where the hardness improvement was maintained. The fracture toughness is rather negatively influence by the sub-zero treatments, except the treatment at-140 °C where no impact or rather improvement has been recorded; thus, the treatment at a temperature of-140 °C seems to be a promising way how to improve the hardness and the fracture toughness pf the Vanadis 6 steel simultaneously.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

95-112

Citation:

Online since:

August 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P.F. Stratton, Optimising nano-carbide precipitation in tool steels. Mater. Sci. Eng. A449 – 451 (2007) 809 – 812.

DOI: 10.1016/j.msea.2006.01.162

Google Scholar

[2] T.P. Sweeney, Deep cryogenics: the great cold debate. Heat Treating, 2 (1986) 28 – 33.

Google Scholar

[3] D. Das, K.K. Ray, Structure-property correlation of sub-zero treated AISI D2 steel. Mater. Sci. Eng. A541 (2012) 45 – 60.

DOI: 10.1016/j.msea.2012.01.130

Google Scholar

[4] D.N. Collins, Deep cryogenic treatment of tool steels - a review, Heat Treat. Met. 2 (1996) 40 – 42.

Google Scholar

[5] D. Das, A.K. Dutta, K.K. Ray, Sub-zero treatments of AISI D2 steel: Part I. Microstructure and hardness. Mater. Sci. Eng. A527 (2010) 2182 – 2193.

DOI: 10.1016/j.msea.2009.10.070

Google Scholar

[6] P. Jurči, M. Kusý, J. Ptačinová, V. Kuracina, P. Priknerová, Long-term Sub-zero Treatment of P/M Vanadis 6 Ledeburitic Tool Steel – a Preliminary Study. Manuf. Technol. 15 (2015) 41 – 47.

DOI: 10.21062/ujep/x.2015/a/1213-2489/mt/15/1/41

Google Scholar

[7] P. Jurči, M. Dománková, L. Čaplovič, J. Ptačinová, J. Sobotová, P. Salabová, O. Prikner, B. Šuštaršič, D. Jenko, Microstructure and hardness of sub-zero treated and no tempered P/M Vanadis 6 ledeburitic tool steel. Vacuum 111 (2015) 92 – 101.

DOI: 10.1016/j.vacuum.2014.10.004

Google Scholar

[8] A.I. Tyshchenko, W. Theisen, A. Oppenkowski, S. Siebert, O.N. Razumov, A.P. Skoblik, V.A. Sirosh, J.N. Petrov, V.G. Gavriljuk, Low-temperature martensitic transformation and deep cryogenic treatment of a tool steel. Mater. Sci. Eng. A527 (2010) 7027 – 7039.

DOI: 10.1016/j.msea.2010.07.056

Google Scholar

[9] H. Li, W. Tong, J. Cui, H. Zhang, L. Chen, L. Zuo, The influence of deep cryogenic treatment on the properties of high-vanadium alloy steel, Mater. Sci. Eng. A662 (2016) 356 – 362.

DOI: 10.1016/j.msea.2016.03.039

Google Scholar

[10] M. El Mehtedi, P. Ricci, L. Drudi, S. El Mohtadi, M. Cabibbo, S. Spigarelli, Analysis of the Effect of Deep Cryogenic Treatment on the Hardness and Microstructure of X30 CrMoN 15 1 Steel, Mater. Des. 33 (2012) 136 – 144.

DOI: 10.1016/j.matdes.2011.07.030

Google Scholar

[11] W.N. Putra, P. Pramaditya, P. Pramuka, M.A. Mochtar, Effect of Sub-Zero Treatment on Microstructures, Mechanical Properties, and Dimensional Stability of AISI D2 Cold Work Tool Steel, Mater. Sci. Forum 929 (2018) 136 – 141.

DOI: 10.4028/www.scientific.net/msf.929.136

Google Scholar

[12] F. Meng, K. Tagashira, R. Azuma, H. Sohma, Role of Eta-carbide Precipitation´s in the Wear Resistance Improvements of Fe-12Cr-Mo-V-1.4C Tool Steel by Cryogenic Treatment. ISIJ Int. 34 (1994) 205 - 210.

DOI: 10.2355/isijinternational.34.205

Google Scholar

[13] P. Jurči, M. Dománková, M. Hudáková, J. Ptačinová, M. Pašák, P. Palček, Characterization of microstructure and tempering response of conventionally quenched, short- and long-time sub-zero treated PM Vanadis 6 ledeburitic tool steel. Mater. Charact. 134 (2017) 398 – 415.

DOI: 10.1016/j.matchar.2017.10.029

Google Scholar

[14] J. Sobotová, P. Jurči, I. Dlouhý, The effect of sub-zero treatment on microstructure, fracture toughness, and wear resistance of Vanadis 6 tool steel. Mater. Sci. Eng. A652 (2016) 192 – 204.

DOI: 10.3390/met8121047

Google Scholar

[15] D. Das, R. Sarkar, A.K. Dutta, K.K. Ray, Influence of sub-zero treatments on fracture toughness of AISI D2 steel. Mater. Sci. Eng. A528 (2010) 589 – 603.

DOI: 10.1016/j.msea.2010.09.057

Google Scholar

[16] P. Jurči, M. Dománková, J. Ptačinová, M. Pašák, M. Kusý, P. Priknerová, Investigation of the Microstructural Changes and Hardness Variations of Sub-Zero Treated Cr-V Ledeburitic Tool Steel Due to the Tempering Treatment. J. Mater. Eng. Perform. 27 (2018) 1514 – 1529.

DOI: 10.1007/s11665-018-3261-6

Google Scholar

[17] K.H. Schwalbe, On the influence of microstructure on crack propagation mechanisms and fracture toughness of metallic material, Eng. Fract. Mech. 9 (1977) 795 – 832.

DOI: 10.1016/0013-7944(77)90004-2

Google Scholar

[18] A. Kokosza, J. Pacyna, Effect of retained austenite on the fracture toughness of tempered tool steel, Arch. Mater. Sci. Eng. 31 (2) (2008) 87 – 90.

Google Scholar

[19] B. Podgornik, B. Zužek, V. Leskovsek, Experimental evaluation of tool steel fracture toughness using circumferentially notched and pre-cracked tension bar specimen, Mater. Perform. Charact. 3 (3) (2014) 1 – 17.

DOI: 10.1520/mpc20130045

Google Scholar

[20] B. Podgornik, M. Sedlacek, M. Čekada, S. Jacobson, B. Zajec, Impact of fracture toughness on surface properties of PVD coated cold work tool steel, Surf. Coat. Technol. 277 (2015) 144 – 150.

DOI: 10.1016/j.surfcoat.2015.07.021

Google Scholar

[21] H. Berns, C. Broeckmann, Fracture of hot formed ledeburitic chromium steels, Eng. Fract. Mech. 58 (4) (1997) 311 – 325.

DOI: 10.1016/s0013-7944(97)00118-5

Google Scholar

[22] J. Ptačinová, V. Sedlická, M. Hudáková, I. Dlouhý, P. Jurči, Microstructure – Toughness relationships in sub-zero treated and tempered Vanadis 6 steel compared to conventional treatment. Mater. Sci. Eng., A702 (2017) 241 – 258.

DOI: 10.1016/j.msea.2017.07.007

Google Scholar

[23] J. Ptačinová, P. Jurči, I. Dlouhý, Fracture toughness of ledeburitic Vanadis 6 steel after sub-zero treatment for 17 H and double tempering. Mater. Tehnol. 51 (2017) 729 – 733.

DOI: 10.17222/mit.2016.118

Google Scholar

[24] V.G. Gavriljuk, W. Theisen, V.V. Sirosh, E.V. Polshin, A. Kortmann, G.S. Mogilny, Yu.N. Petrov, Y.V. Tarusin, Low-temperature martensitic transformation in tool steels in relation to their deep cryogenic treatment. Acta Mater. 61 (2013) 1705 – 1715.

DOI: 10.1016/j.actamat.2012.11.045

Google Scholar

[25] M. Pašák, Study of the phase transformations kinetics in high alloy systems based on iron. PhD Thesis, Trnava: Faculty of Materials and Technology, Trnava, 2015. (In Czech).

Google Scholar

[26] P. Bílek, J. Sobotová, P. Jurči, Evaluation of the Microstructural Changes in Cr-V Ledeburitic Tool Steel Depending on the Austenitization Temperature, Mater. Tehnol. 45 (2011) 489 – 493.

Google Scholar

[27] ISO 12135: 2010. Metallic materials – determination of plane strain fracture toughness.

Google Scholar

[28] M. Pellizzari, A. Molinari, Deep cryogenic treatment of cold work tool steel, in: J. Bergstrom, G. Fredriksson, M. Johansson, O. Kotik, F. Thuvander (Eds.), Proc. of the 6th Int. Tooling Conf, Karlstad University, Sweden, 2002, 547 – 558.

Google Scholar

[29] D. Das, K.K. Ray, A.K. Dutta, Influence of temperature of sub-zero treatments on the wear behaviour of die steel, Wear 267 (2009) 1361 – 1370.

DOI: 10.1016/j.wear.2008.11.029

Google Scholar

[30] C.H. Surberg, P. Stratton, K. Lingenhoele, The effect of some heat treatment parameters on the dimensional stability of AISI D2, Cryogenics 48 (2008) 42 – 47.

DOI: 10.1016/j.cryogenics.2007.10.002

Google Scholar

[31] K. Amini, A. Akhbarizadeh, S. Javadpour, Investigating the effect of holding duration on the microstructure of 1.2080 tool steel during the deep cryogenic treatment, Vacuum 86 (2012) 1534 – 1540.

DOI: 10.1016/j.vacuum.2012.02.013

Google Scholar

[32] K. Amini, A. Akhbarizadeh, S. Javadpour, Effect of deep cryogenic treatment on the formation of nano-sized carbides and the wear behaviour of D2 tool steel, Int. J. Miner. Metall. Mater. 19 (2012) 795 – 799.

DOI: 10.1007/s12613-012-0630-2

Google Scholar

[33] A. Akhbarizadeh, S. Javadpour, Investigating the effect of as-quenched vacancies in the final microstructure of 1.2080 tool steel during the deep cryogenic heat treatment, Mater. Lett. 93 (2013) 247 – 250.

DOI: 10.1016/j.matlet.2012.11.081

Google Scholar

[34] A. Akhbarizadeh, A. Shafyei, M.A. Golozar, Effects of cryogenic treatment on wear behaviour of D6 tool steel, Mater. Des. 30 (2009) 3259 – 3264.

DOI: 10.1016/j.matdes.2008.11.016

Google Scholar

[35] D.N. Collins, Cryogenic treatment of tool steels, Adv. Mater. Process. 12 (1998) 24 – 29.

Google Scholar

[36] S. Li, N. Min, L. Deng, X. Wu, Y. Min, H. Wang, Influence of deep cryogenic treatment on internal friction behaviour in the process of tempering, Mater. Sci. Eng. A528 (2011) 1247 – 1250.

DOI: 10.1016/j.msea.2010.10.012

Google Scholar

[37] P. Jurči, J. Ptačinová, M. Hudáková, M. Dománková, M. Kusý, M. Sahul, Simultaneous Improvement of Wear Performance and Toughness of Ledeburitic Tool Steels by Sub-zero Treatment. In: Proc. of the 20th Int. Conf. on Metal Materials and Engineering. Copenhagen, Denmark, June 11 – 12, 2018, Ed. Waset, Copenhagen, 1059 – 1066.

DOI: 10.4028/www.scientific.net/kem.647.9

Google Scholar

[38] A. Kulmburg, E. Putzgruber, F. Korntheurer, E. Kaiser, Beitrag zum Tiefkühlen von Schnellarbeitsstaehlen, HTM J. Heat Treat. Mater. 47 (1992) 318 – 323 (In German).

Google Scholar

[39] A. Molinari, M. Pellizzari, S. Gialanella, G. Straffelini, K.H. Stiasny, Effect of deep cryogenic treatment on mechanical properties of tool steels, J. Mater. Proc. Technol. 118 (2001) 350 – 355.

DOI: 10.1016/s0924-0136(01)00973-6

Google Scholar

[40] D.N. Collins, J. Dormer, Deep Cryogenic Treatment of a D2 Cold-Work Tool Steel, Heat Treat. Met. 24 (1997) 71 - 74.

Google Scholar

[41] Y.M. Rhyim, S.H. Han, Y.S. Na, J.H. Lee, Effect of deep cryogenic treatment on carbide precipitation and mechanical properties of tool steel, Solid State Phenom. 118 (2006) 9 – 14.

DOI: 10.4028/www.scientific.net/ssp.118.9

Google Scholar

[42] S.K. Putatunda, Fracture toughness of a high carbon and high silicon steel, Mater. Sci. Eng. A297 (2001) 31 – 43.

Google Scholar

[43] N. Hansen, Hall-Petch relation and boundary strengthening, Scr. Mater. 51 (2004), 801 – 806.

DOI: 10.1016/j.scriptamat.2004.06.002

Google Scholar