[1]
D. Das, A.K. Dutta, K.K. Ray, Influence of varied cryotreatment on the wear behaviour of AISI D2 steel, Wear 266 (2009) 297 – 309.
DOI: 10.1016/j.wear.2008.07.001
Google Scholar
[2]
P. Jurči, Cr-V Ledeburitic Cold-Work Tool Steels, Mater. Tehnol., 45 (2011) 383 - 394.
Google Scholar
[3]
D.N. Collins, Cryogenic treatment of tool steels, Adv. Mater. Process. 12 (1998) 24 – 29.
Google Scholar
[4]
D.N. Collins, J. Dormer, Deep Cryogenic Treatment of a D2 Cold-Work Tool Steel, Heat Treat. Met. 24 (1997) 71 - 74.
Google Scholar
[5]
J. Sobotová, P. Jurči, I. Dlouhý, The effect of sub-zero treatment on microstructure, fracture toughness, and wear resistance of Vanadis 6 tool steel. Mater. Sci. Eng. A652 (2016) 192 – 204.
DOI: 10.3390/met8121047
Google Scholar
[6]
K. Amini, A. Akhbarizadeh, S. Javadpour, Investigating the effect of holding duration on the microstructure of 1.2080 tool steel during the deep cryogenic treatment, Vacuum 86 (2012) 1534 – 1540.
DOI: 10.1016/j.vacuum.2012.02.013
Google Scholar
[7]
D. Das, A.K. Dutta, K.K. Ray, Sub-zero treatments of AISI D2 steel: Part I. Microstructure and hardness. Mater. Sci. Eng. A527 (2010) 2182 – 2193.
DOI: 10.1016/j.msea.2009.10.070
Google Scholar
[8]
P. Jurči, M. Dománková, L. Čaplovič, J. Ptačinová, J. Sobotová, P. Salabová, O. Prikner, B. Šuštaršič, D. Jenko, Microstructure and hardness of sub-zero treated and no tempered P/M Vanadis 6 ledeburitic tool steel. Vacuum 111 (2015) 92 – 101.
DOI: 10.1016/j.vacuum.2014.10.004
Google Scholar
[9]
ISO 12135:2016 Metallic materials — Unified method of test for the determination of quasistatic fracture toughness.
DOI: 10.3403/30394398u
Google Scholar
[10]
P. Jurči, M. Dománková, M. Hudáková, J. Ptačinová, M. Pašák, P. Palček, Characterization of microstructure and tempering response of conventionally quenched, short- and long-time sub-zero treated PM Vanadis 6 ledeburitic tool steel. Mater. Charact. 134 (2017) 398 – 415.
DOI: 10.1016/j.matchar.2017.10.029
Google Scholar
[11]
P. Jurči, I. Dlouhý, P. Priknerová, Z. Mrštný, Effect of Sub-Zero Treatment Temperatures on Hardness, Flexural Strength, and Fracture Toughness of Vanadis 6 Ledeburitic Die Steel, Metals, 8 (2018) Article Number 1047.
DOI: 10.3390/met8121047
Google Scholar
[12]
ASTM E975-13. Standard Practice for X-ray Determination of Retained Austenite in Steel with Near Random Crystallographic Orientation; ASTM Book of Standards: West Conshohocken, PA, USA, 2004; Volume 3.01.
DOI: 10.1520/e0975-03r08
Google Scholar
[13]
J. Ptačinová, P. Jurči, I. Dlouhý, Fracture toughness of ledeburitic Vanadis 6 steel after sub-zero treatment for 17 H and double tempering. Mater. Tehnol. 51 (2017) 729 – 733.
DOI: 10.17222/mit.2016.118
Google Scholar
[14]
J. Ďurica, P. Jurči, J. Ptačinová, Microstructural evaluation of tool steel Vanadis 6 after sub-zero treatment at -140 °C without tempering, Manufacturing Technology, 18 (2018) 222 – 226.
DOI: 10.21062/ujep/81.2018/a/1213-2489/mt/18/2/222
Google Scholar
[15]
S. Buytoz, Microstructural properties of M7C3 eutectic carbides in a Fe–Cr–C alloy, Mater. Lett., 60 (2006) 605 – 608.
DOI: 10.1016/j.matlet.2005.09.046
Google Scholar