Elaboration and Characterization of in Doped TiO2 Thin Films

Article Preview

Abstract:

Undoped and indium (In) doped TiO2 thin films were deposited by sol-gel method onto glass substrates. Structural, optical and electrical properties of films were studied. X-rays diffraction patterns showed that the TiO2 films consist of anatase phase. AFM images revealed that the surface roughness of In:TiO2 films is smoother than that of undoped TiO2 films. UV–Vis transmittance results showed TiO2 films have significant optical absorption in the region of 300–350 nm and are fully transparent in the visible. Both film thickness and refraction index in dependence on the fraction of In doping are derived from TE and TM optical guided modes excited in a prism coupler. The optical gap Eg decreases from 3.50 eV for undoped TiO2 film to 3.43 eV at 2 at.% In doping and then increases for doping with indium at 10 at.%. The electrical characterization shows a maximum electrical conductivity of 2.7 (S/cm) obtained for the film doped with 10 at.% In.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

59-68

Citation:

Online since:

September 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Zhu, L. Chen, H. Gong, M. Zi, B. Cao, A novel TiO2 nanorod/nanoparticle composite architecture to improve the performance of dye-sensitized solar cells , Ceramics International 40 (2014) 2337-2342.

DOI: 10.1016/j.ceramint.2013.08.003

Google Scholar

[2] S. Lin, D. Li, J. Wu, X. Li, S. A. Akbar, A selective room temperature formaldehyde gas sensor using TiO2 nanotube arrays, Sensors and Actuators B: Chemical 156 (2011) 505-509.

DOI: 10.1016/j.snb.2011.02.046

Google Scholar

[3] S.-Y. Lee, S.-J. Park, TiO2 photocatalyst for water treatment applications, Journal of Industrial and Engineering Chemistry 19 (2013) 1761–1769.

DOI: 10.1016/j.jiec.2013.07.012

Google Scholar

[4] V. Senthilkumar, A. Kathalingam, S. Valanarasu, V. Kannan, J.-K.Rhee, Bipolar resistive switching of solution processed TiO2–graphene oxide nanocomposite for nonvolatile memory applications , Physics Letters A 377 (2013) 2432–2435.

DOI: 10.1016/j.physleta.2013.07.018

Google Scholar

[5] G. San Vicente, A. Morales, M.T. Gutierrez, Preparation and characterization of sol–gel TiO2 antireflective coatings for silicon, Thin Solid Films 391(2001) 133-137.

DOI: 10.1016/s0040-6090(01)00963-4

Google Scholar

[6] G. Liu, W. Jian, H. Jin, Z. Shi, G. Qiao, Dielectric behavior of TiO2 ceramic prepared by plasma activated sintering, Materials Letters 65 (2011) 3468-3471.

DOI: 10.1016/j.matlet.2011.07.075

Google Scholar

[7] P. A. Osorio-Vargas, C. Pulgarin, A. Sienkiewicz, L. R. Pizzio, M. N. Blanco, R. Torres-Palma, A. C.Pétrier, J. A.Rengifo-Herrera, Low-frequency ultrasound induces oxygen vacancies formation and visible light absorption in TiO2 P-25 nanoparticles, Ultrasonics Sonochemistry 19 (2012) 383-386.

DOI: 10.1016/j.ultsonch.2011.11.013

Google Scholar

[8] M.-G. Sung, S‏. J. Kim‏, M. S. Joo, J.S. Roh‏, C. Ryu‏, S. Hong, H. Kim, Y. S. Kim, Effect of the oxygen vacancy gradient in titanium dioxide on the switching direction of bipolar resistive memory, Solid-State Electronics 63 (2011) 115-118.

DOI: 10.1016/j.sse.2011.05.007

Google Scholar

[9] N. Nasralla , M. Yeganeh, Y. Astuti, S. Piticharoenphun, N. Shahtahmasebi, A. Kompany, M. Karimipour, B.G. Mendis, N.R.J. Poolton, L. Šiller,Structural and spectroscopic study of Fe-doped TiO2 nanoparticles prepared by sol–gel method, Scientia Iranica 20 (2013) 1018-1022.

DOI: 10.1016/j.physb.2017.02.010

Google Scholar

[10] R. Xu, J. Li, J. Wang, X. Wang, B. Liu, B. Wang, X. Luan, X. Zhang, Photocatalytic degradation of organic dyes under solar light irradiation combined with Er3+:YAlO3/Fe- and Co-doped TiO2 coated composites, Solar Energy Materials & Solar Cells 94 (2010) 1157-1165.

DOI: 10.1016/j.solmat.2010.03.003

Google Scholar

[11] F. Hanini, Y. Bouachiba, F. Kermiche, A. Taabouche, A. Bouabellou, T. Kerdja, K. Boukheddaden, Characteristics of Al-doped TiO2 thin films grown by pulsed laser deposition, Int. J. Nanoparticles 6 (2013) 132-142.

DOI: 10.1504/ijnp.2013.054988

Google Scholar

[12] S.-S. Lin, Properties of heavily W-doped TiO2 films deposited on Al2O3-deposited glass by simultaneous rf and dc magnetron sputtering, Ceramics International 40 (2014) 217-225.

DOI: 10.1016/j.ceramint.2013.05.126

Google Scholar

[13] K. Shalini, S. Chandrasekaran, S.A. Shivashankar, Growth of nanocrystalline TiO2 films by MOCVD using a novel precursor, Journal of Crystal Growth 284 (2005) 388-395.

DOI: 10.1016/j.jcrysgro.2005.06.053

Google Scholar

[14] Y. Bouachiba, F. Hanini, A. Bouabellou, F. Kermiche, A. Taabouche, M. Bouafia, S. Amara, S. Sahli, K. Boukheddaden, TiO2 thin films studied by FTIR, AFM and spectroscopic ellipsometry, Int. J. Nanoparticles 6 (2013) 169–177.

DOI: 10.1504/ijnp.2013.054992

Google Scholar

[15] Y. Sun, M. S. Ata, I. Zhitomirsky, Electrophoretic deposition of TiO2 nanoparticles using organic dyes, Journal of Colloid and Interface Science 369 (2012) 395-401.

DOI: 10.1016/j.jcis.2011.12.010

Google Scholar

[16] M. Sreedhar, I. Neelakanta Reddy, Parthasarathi Bera, D. Ramachandran, K. Gobi Saravanan, Arul Maximus Rabel, C. Anandan, P. Kuppusami, J. Brijitta, Cu/TiO2 thin films prepared by reactive RF magnetron sputtering , Applied Physics A 120 (2015) 765-773.

DOI: 10.1007/s00339-015-9254-5

Google Scholar

[17] C.J. Brinker, M.S. Harrington, Sol-gel derived antireflective coatings for silicon, Solar Energy Materials 5 (1981) 159-172.

DOI: 10.1016/0165-1633(81)90027-7

Google Scholar

[18] R. Ulrich, R. Torge, Measurement of Thin Film Parameters with a Prism Coupler, Appl. Opt. 12 (1973) 2901-2908.

DOI: 10.1364/ao.12.002901

Google Scholar

[19] B. D. Cullity, S.R. Stock, Elements of X-ray Diffraction, Printice-Hall, NJ. 3rd ed., 2001 p.388.

Google Scholar

[20] N.R. Mathews, E.R. Morales, M.A. Cortes-Jacome, A. J. A. Toledo, TiO2 thin films – Influence of annealing temperature on structural, optical and photocatalytic properties, Solar Energy 83 (2009) 1499-1508.

DOI: 10.1016/j.solener.2009.04.008

Google Scholar

[21] R. Mechiakh, F. Meriche, R. Kremer, R. Bensaha, B. Boudine, A. Boudrioua, TiO2 thin films prepared by sol–gel method for waveguiding applications: Correlation between the structural and optical properties, Optical Materials, 30 (2007) 645-651.

DOI: 10.1016/j.optmat.2007.02.047

Google Scholar

[22] J. Mugnier, M. Bahtat, L. Lou, F. Sommer, C. Bovier, R. Perrin, Fabrication des guides d'onde optiques par la méthode sol–gel, JNOG Paris (1995).

Google Scholar

[23] S. Mahalingam, M.J. Edirisinghe, Characteristics of electrohydrodynamically prepared titanium dioxide films, Appl. Phys. A 89 (2007) 987–993.

DOI: 10.1007/s00339-007-4232-1

Google Scholar

[24] A. M. Smith, S. Nie, Semiconductor Nanocrystals: Structure, Properties, and Band Gap Engineering, Acc Chem Res. 43 (2010) 190–200.

DOI: 10.1021/ar9001069

Google Scholar

[25] R. Koole, E. Groeneveld, D. Vanmaekelbergh, A. Meijerink, C. Mello Donegá, Size effects on semiconductor nanoparticles, in: C. de Mello Donegá (Ed.), Nanoparticles: Workhorses of Nanoscience, Springer, Berlin Heidelberg, Berlin, Heidelberg 2014, p.13–51.

DOI: 10.1007/978-3-662-44823-6_2

Google Scholar

[26] A. Hafdallah, F. Yanineb, M.S. Aida, N. Attaf, In doped ZnO thin films, Journal of Alloys and Compounds 509 (2011) 7267-7270.

DOI: 10.1016/j.jallcom.2011.04.058

Google Scholar

[27] Matthew S. Dabney, Maikel F. A. M. van Hest, Charles W. Teplin‏ ,S. Phil Arenkiel, John D. Perkins, David S. Ginley, Pulsed laser deposited Nb doped TiO2 as a transparent conducting oxide, Thin Solid Films 516 (2008) 4133-4138.

DOI: 10.1016/j.tsf.2007.10.093

Google Scholar

[28] F. Hanini, A. Bouabellou, Y. Bouachiba, F. Kermiche, A. Taabouche, K. Boukheddaden, Propriétés structurales, optiques et électriques des couches minces de TiO2 dopé Cu obtenues par voie Sol-gel, Afrique SCIENCE 10 (2014) 10-20.

DOI: 10.2478/s13536-013-0147-z

Google Scholar

[29] B. Benhaoua, S. Abbas, A. Rahal, A.Benhaoua, M.S. Aida, Effect of film thickness on the structural, optical and electrical properties of SnO2:F thin films prepared by spray ultrasonic for solar cells applications, Superlattices and Microstructures 83 (2015) 78–88.

DOI: 10.1016/j.spmi.2015.03.017

Google Scholar