[1]
M. Zhu, L. Chen, H. Gong, M. Zi, B. Cao, A novel TiO2 nanorod/nanoparticle composite architecture to improve the performance of dye-sensitized solar cells , Ceramics International 40 (2014) 2337-2342.
DOI: 10.1016/j.ceramint.2013.08.003
Google Scholar
[2]
S. Lin, D. Li, J. Wu, X. Li, S. A. Akbar, A selective room temperature formaldehyde gas sensor using TiO2 nanotube arrays, Sensors and Actuators B: Chemical 156 (2011) 505-509.
DOI: 10.1016/j.snb.2011.02.046
Google Scholar
[3]
S.-Y. Lee, S.-J. Park, TiO2 photocatalyst for water treatment applications, Journal of Industrial and Engineering Chemistry 19 (2013) 1761–1769.
DOI: 10.1016/j.jiec.2013.07.012
Google Scholar
[4]
V. Senthilkumar, A. Kathalingam, S. Valanarasu, V. Kannan, J.-K.Rhee, Bipolar resistive switching of solution processed TiO2–graphene oxide nanocomposite for nonvolatile memory applications , Physics Letters A 377 (2013) 2432–2435.
DOI: 10.1016/j.physleta.2013.07.018
Google Scholar
[5]
G. San Vicente, A. Morales, M.T. Gutierrez, Preparation and characterization of sol–gel TiO2 antireflective coatings for silicon, Thin Solid Films 391(2001) 133-137.
DOI: 10.1016/s0040-6090(01)00963-4
Google Scholar
[6]
G. Liu, W. Jian, H. Jin, Z. Shi, G. Qiao, Dielectric behavior of TiO2 ceramic prepared by plasma activated sintering, Materials Letters 65 (2011) 3468-3471.
DOI: 10.1016/j.matlet.2011.07.075
Google Scholar
[7]
P. A. Osorio-Vargas, C. Pulgarin, A. Sienkiewicz, L. R. Pizzio, M. N. Blanco, R. Torres-Palma, A. C.Pétrier, J. A.Rengifo-Herrera, Low-frequency ultrasound induces oxygen vacancies formation and visible light absorption in TiO2 P-25 nanoparticles, Ultrasonics Sonochemistry 19 (2012) 383-386.
DOI: 10.1016/j.ultsonch.2011.11.013
Google Scholar
[8]
M.-G. Sung, S. J. Kim, M. S. Joo, J.S. Roh, C. Ryu, S. Hong, H. Kim, Y. S. Kim, Effect of the oxygen vacancy gradient in titanium dioxide on the switching direction of bipolar resistive memory, Solid-State Electronics 63 (2011) 115-118.
DOI: 10.1016/j.sse.2011.05.007
Google Scholar
[9]
N. Nasralla , M. Yeganeh, Y. Astuti, S. Piticharoenphun, N. Shahtahmasebi, A. Kompany, M. Karimipour, B.G. Mendis, N.R.J. Poolton, L. Šiller,Structural and spectroscopic study of Fe-doped TiO2 nanoparticles prepared by sol–gel method, Scientia Iranica 20 (2013) 1018-1022.
DOI: 10.1016/j.physb.2017.02.010
Google Scholar
[10]
R. Xu, J. Li, J. Wang, X. Wang, B. Liu, B. Wang, X. Luan, X. Zhang, Photocatalytic degradation of organic dyes under solar light irradiation combined with Er3+:YAlO3/Fe- and Co-doped TiO2 coated composites, Solar Energy Materials & Solar Cells 94 (2010) 1157-1165.
DOI: 10.1016/j.solmat.2010.03.003
Google Scholar
[11]
F. Hanini, Y. Bouachiba, F. Kermiche, A. Taabouche, A. Bouabellou, T. Kerdja, K. Boukheddaden, Characteristics of Al-doped TiO2 thin films grown by pulsed laser deposition, Int. J. Nanoparticles 6 (2013) 132-142.
DOI: 10.1504/ijnp.2013.054988
Google Scholar
[12]
S.-S. Lin, Properties of heavily W-doped TiO2 films deposited on Al2O3-deposited glass by simultaneous rf and dc magnetron sputtering, Ceramics International 40 (2014) 217-225.
DOI: 10.1016/j.ceramint.2013.05.126
Google Scholar
[13]
K. Shalini, S. Chandrasekaran, S.A. Shivashankar, Growth of nanocrystalline TiO2 films by MOCVD using a novel precursor, Journal of Crystal Growth 284 (2005) 388-395.
DOI: 10.1016/j.jcrysgro.2005.06.053
Google Scholar
[14]
Y. Bouachiba, F. Hanini, A. Bouabellou, F. Kermiche, A. Taabouche, M. Bouafia, S. Amara, S. Sahli, K. Boukheddaden, TiO2 thin films studied by FTIR, AFM and spectroscopic ellipsometry, Int. J. Nanoparticles 6 (2013) 169–177.
DOI: 10.1504/ijnp.2013.054992
Google Scholar
[15]
Y. Sun, M. S. Ata, I. Zhitomirsky, Electrophoretic deposition of TiO2 nanoparticles using organic dyes, Journal of Colloid and Interface Science 369 (2012) 395-401.
DOI: 10.1016/j.jcis.2011.12.010
Google Scholar
[16]
M. Sreedhar, I. Neelakanta Reddy, Parthasarathi Bera, D. Ramachandran, K. Gobi Saravanan, Arul Maximus Rabel, C. Anandan, P. Kuppusami, J. Brijitta, Cu/TiO2 thin films prepared by reactive RF magnetron sputtering , Applied Physics A 120 (2015) 765-773.
DOI: 10.1007/s00339-015-9254-5
Google Scholar
[17]
C.J. Brinker, M.S. Harrington, Sol-gel derived antireflective coatings for silicon, Solar Energy Materials 5 (1981) 159-172.
DOI: 10.1016/0165-1633(81)90027-7
Google Scholar
[18]
R. Ulrich, R. Torge, Measurement of Thin Film Parameters with a Prism Coupler, Appl. Opt. 12 (1973) 2901-2908.
DOI: 10.1364/ao.12.002901
Google Scholar
[19]
B. D. Cullity, S.R. Stock, Elements of X-ray Diffraction, Printice-Hall, NJ. 3rd ed., 2001 p.388.
Google Scholar
[20]
N.R. Mathews, E.R. Morales, M.A. Cortes-Jacome, A. J. A. Toledo, TiO2 thin films – Influence of annealing temperature on structural, optical and photocatalytic properties, Solar Energy 83 (2009) 1499-1508.
DOI: 10.1016/j.solener.2009.04.008
Google Scholar
[21]
R. Mechiakh, F. Meriche, R. Kremer, R. Bensaha, B. Boudine, A. Boudrioua, TiO2 thin films prepared by sol–gel method for waveguiding applications: Correlation between the structural and optical properties, Optical Materials, 30 (2007) 645-651.
DOI: 10.1016/j.optmat.2007.02.047
Google Scholar
[22]
J. Mugnier, M. Bahtat, L. Lou, F. Sommer, C. Bovier, R. Perrin, Fabrication des guides d'onde optiques par la méthode sol–gel, JNOG Paris (1995).
Google Scholar
[23]
S. Mahalingam, M.J. Edirisinghe, Characteristics of electrohydrodynamically prepared titanium dioxide films, Appl. Phys. A 89 (2007) 987–993.
DOI: 10.1007/s00339-007-4232-1
Google Scholar
[24]
A. M. Smith, S. Nie, Semiconductor Nanocrystals: Structure, Properties, and Band Gap Engineering, Acc Chem Res. 43 (2010) 190–200.
DOI: 10.1021/ar9001069
Google Scholar
[25]
R. Koole, E. Groeneveld, D. Vanmaekelbergh, A. Meijerink, C. Mello Donegá, Size effects on semiconductor nanoparticles, in: C. de Mello Donegá (Ed.), Nanoparticles: Workhorses of Nanoscience, Springer, Berlin Heidelberg, Berlin, Heidelberg 2014, p.13–51.
DOI: 10.1007/978-3-662-44823-6_2
Google Scholar
[26]
A. Hafdallah, F. Yanineb, M.S. Aida, N. Attaf, In doped ZnO thin films, Journal of Alloys and Compounds 509 (2011) 7267-7270.
DOI: 10.1016/j.jallcom.2011.04.058
Google Scholar
[27]
Matthew S. Dabney, Maikel F. A. M. van Hest, Charles W. Teplin ,S. Phil Arenkiel, John D. Perkins, David S. Ginley, Pulsed laser deposited Nb doped TiO2 as a transparent conducting oxide, Thin Solid Films 516 (2008) 4133-4138.
DOI: 10.1016/j.tsf.2007.10.093
Google Scholar
[28]
F. Hanini, A. Bouabellou, Y. Bouachiba, F. Kermiche, A. Taabouche, K. Boukheddaden, Propriétés structurales, optiques et électriques des couches minces de TiO2 dopé Cu obtenues par voie Sol-gel, Afrique SCIENCE 10 (2014) 10-20.
DOI: 10.2478/s13536-013-0147-z
Google Scholar
[29]
B. Benhaoua, S. Abbas, A. Rahal, A.Benhaoua, M.S. Aida, Effect of film thickness on the structural, optical and electrical properties of SnO2:F thin films prepared by spray ultrasonic for solar cells applications, Superlattices and Microstructures 83 (2015) 78–88.
DOI: 10.1016/j.spmi.2015.03.017
Google Scholar