Adhesion and Corrosion of Ti, TiN and TiCrN Films Deposits on AISI 316L in SBF Solution

Article Preview

Abstract:

Abstract. In the present work several films of Ti, TiN, and TiCrN have been coated on AISI 316L stainless steel substrates using magnetron sputtering techniques, in order to improve their surface properties. The morphology and structure of the coatings were analysed using scanning electron microscopy (SEM) and X-ray diffraction (XRD). The electrochemical performances skills in an SBF solution and the adhesion of these deposits were studied to understand these behaviors. From the results it was shown the TiCrN deposition presents the lowest corrosion resistance in the SBF solution, while TiN deposit is the most resistant to corrosion resistance in the same solutions, but its critical load (Lc3-TiN), is relatively low and has a risk of delamination which can limit its use. On the other hand, the Ti deposit exhibits a high resistance to corrosion and a high passivation (icorr (Ti) = 0.57 µA.cm-2 and Rp (Ti) = 67.98 KW.cm2). The critical load (Lc3-Ti = 43.38 N), the crack propagation resistance (CPRs-Ti = 81.64 N) and the scratch hardness (HSL-Ti = 125.75´1012 Pa) also testify to its high adhesion to the AISI 316L substrate. Thus the Ti deposit has proved to be the most favorable protective coating for AISI 316L stainless steel in SBF solution.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

39-50

Citation:

Online since:

September 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I.V. Ivanov, E. I. Tkachenko, A. Thoemmes, Corrosion Resistance of Medical Stainless Steel Obtained by Non-Vacuum Electron Beam Cladding, Materials Science Forum 946 (2019) 73-78.

DOI: 10.4028/www.scientific.net/msf.946.73

Google Scholar

[2] J. Baronins, V. Podgursky, M. Antonov, S. Bereznev, I. Hussainova, Electrochemical Behaviour of TiCN and TiAlN Gradient Coatings Prepared by Lateral Rotating Cathode Arc PVD Technology, Key Engineering Materials 721 (2017) 414-418.

DOI: 10.4028/www.scientific.net/kem.721.414

Google Scholar

[3] R.C. Vega-Morón, G.A. Rodríguez Castro, D.V. Melo-Máximo, J.V. Méndez-Méndez, L. Melo-Máximo, J.E. Oseguera-Peña, A. Meneses-Amador, Adhesion and mechanical properties of Ti films deposited by DC magnetron sputtering, Surface & Coatings Technology 349 (2018) 1137–1147.

DOI: 10.1016/j.surfcoat.2018.05.078

Google Scholar

[4] A. Nemati, M. Saghafi, S. Khamseh, E. Alibakhshi, P. Zarrintaj, M.R. Saeb, Magnetron-sputtered TiN thin films applied on titanium-based alloys for biomedical applications: Composition-microstructure-property relationships, Surface and Coatings Technology 349 (2018) 251–259.

DOI: 10.1016/j.surfcoat.2018.05.068

Google Scholar

[5] S. Bauer, P. Schmuki, K. von der Mark, J. Park, Engineering biocompatible implant surfaces, Part I: Materials and surfaces, Progress in Materials Science 58 (2013) 261–326.

DOI: 10.1016/j.pmatsci.2012.09.001

Google Scholar

[6] H.A. Zaman, S. Sharif, M.H. Idris, A. Kamarudin, Metallic biomaterials for medical implant applications: A Review, Applied Mechanics and Materials 735 (2015) 19-25.

DOI: 10.4028/www.scientific.net/amm.735.19

Google Scholar

[7] F. Jiang, T.F. Zhang, B.H. Wu, Y. Yu, Y.P. Wu, Sh.F. Zhu, F.J. Jing, N. Huang, Y.X. Leng, Structure, mechanical and corrosion properties of TiN films deposited on stainless steel substrates with different inclination angles by DCMS and HPPMS, Surface & Coatings Technology 292 (2016) 54–62.

DOI: 10.1016/j.surfcoat.2016.03.007

Google Scholar

[8] Q. Wang, F. Zhou, C. Wang, M. F. Yuen, M. Wang, T. Qian, M. Matsumoto, J. Yan, Comparison of tribological and electrochemical properties of TiN, CrN, TiAlN and a-C:H coatings in simulated body fluid, Materials Chemistry and Physics 158 (2015) 74-81.

DOI: 10.1016/j.matchemphys.2015.03.039

Google Scholar

[9] S. Grosso, L.L. Romain, G. Berthomé, G. Renou, T. LeCoz, M. Mantel, Titanium and titanium nitride thin films grown by dc reactive magnetron sputtering Physical Vapor Deposition in a continuous mode on stainless steel wires: Chemical, morphological and structural investigations, Surface and Coatings Technology 324 (2017) 318–327.

DOI: 10.1016/j.surfcoat.2017.05.089

Google Scholar

[10] A. Gilewicz, P. Chmielewska, D. Murzynski, E. Dobruchowska, B. Warcholinski, Corrosion resistance of CrN and CrCN/CrN coatings deposited using cathodic arc evaporation in Ringer's and Hank's solutions, Surface and Coatings Technology 299 (2016) 7–14.

DOI: 10.1016/j.surfcoat.2016.04.069

Google Scholar

[11] Y.X. Ou, J. Lin, S. Tong, W.D. Sproul, M.K. Lei, Structure, adhesion and corrosion behavior of CrN/TiN superlattice coatings deposited by the combined deep oscillation magnetron sputtering and pulsed dc magnetron sputtering, Surface and Coatings Technology 293 (2016) 21–27.

DOI: 10.1016/j.surfcoat.2015.10.009

Google Scholar

[12] Y.H. Yang, F.B. Wu, Microstructure evolution and protective properties of TaN multilayer coatings, Surface and Coatings Technology 308 (2016) 108-114.

DOI: 10.1016/j.surfcoat.2016.05.091

Google Scholar

[13] J. Zuo, Y. Xie, J. Zhang, J. Luo,Y. Wang, Z.M. Yu, Z.G. Tang, TiN coated stainless steel bracket: Tribological, corrosion resistance, biocompatibility and mechanical performance, Surface and Coatings Technology 277 (2015) 227–233.

DOI: 10.1016/j.surfcoat.2015.07.009

Google Scholar

[14] Z. Lin , S.J Li , F. Sun , D.C Ba , X.C Li, Surface characteristics of a dental implant modified by low energy oxygen ion implantation, Surface & Coatings Technology 365 (2019) 208–213.

DOI: 10.1016/j.surfcoat.2018.09.003

Google Scholar

[15] K. Shukla, R. Rane, J. Alphonsa, P. Maity, S. Mukherjee, Structural, mechanical and corrosion resistance properties of Ti/TiN bilayers deposited by magnetron sputtering on AISI 316L, Surface and Coatings Technology 324 (2017) 167–174.

DOI: 10.1016/j.surfcoat.2017.05.075

Google Scholar

[16] S. A. Naghibi, K. Raeissi, M. H. Fathi, Corrosion and tribocorrosion behavior of Ti/TiN PVD coating on 316L stainless steel substrate in Ringer's solution, Materials Chemistry and Physics 148 (2014) 614-623.

DOI: 10.1016/j.matchemphys.2014.08.025

Google Scholar

[17] W.Y. Wu, M.Y. Chan, Y.H. Hsu, G.Z. Chen, S.C. Liao, C.H. Lee , P.W. Lui, Bioapplication of TiN thin flms deposited using high power impulse magnetron sputtering, Surface and Coatings Technology 362 (2019) 167–175.

DOI: 10.1016/j.surfcoat.2019.01.106

Google Scholar

[18] K. Vasu, M. Ghanashyam Krishna, K. A. Padmanabhan, substrate-temperature dependent structure and composition variation in RF magnetron sputtered titanium nitrid thin films, Applied Surface Science, 257 (2011) 3069-3074.

DOI: 10.1016/j.apsusc.2010.10.118

Google Scholar

[19] S. Datta, M. Das, V.K. Balla, S. Bodhak, V.K. Murugesan, Mechanical, wear, corrosion and biological properties of arc deposited titanium nitride coatings, Surface and Coatings Technology 344 (2018) 214–222.

DOI: 10.1016/j.surfcoat.2018.03.019

Google Scholar

[20] K. Wen-Hsien, S. Yean-Liang, H. Jeng-Haur, Yun-Ting Hsieh, Improved tribological properties, electrochemical resistance and biocompatibility of AISI 316L stainless steel through duplex plasma nitriding and TiN coating treatment, Journal of Biomaterials Applications 32(1) (2017) 12–27.

DOI: 10.1177/0885328217712109

Google Scholar

[21] R.C. Vega-Morón, G.A. Rodríguez Castro, D.V. Melo-Máximo, J.V. Méndez-Méndez, L. Melo-Máximo, J.E. Oseguera-Peña, A. Meneses-Amador, Adhesion and mechanical properties of Ti films deposited by DC magnetron T sputtering, Surface & Coatings Technology 349 (2018) 1137–1147.

DOI: 10.1016/j.surfcoat.2018.05.078

Google Scholar

[22] C. Sha, Z. Zhou, Z. Xie, P. Munroe, Scratch response and tribological behaviour of CrAlNiN coatings deposited by closed field unbalanced magnetron sputtering system, Surface and Coatings Technology 367 (2019) 30–40.

DOI: 10.1016/j.surfcoat.2019.03.053

Google Scholar

[23] M. Zawischa, S. Makowski, N. Schwarzer, V. Weihnach, Scratch resistance of superhard carbon coating, A new approach to failure and adhesion evaluation, Surface & Coatings Technology 308 (2016) 341-348.

DOI: 10.1016/j.surfcoat.2016.07.109

Google Scholar