Substrate Temperature Effect on Structural and Optical Properties of ZnO Thin Films Deposited by Spray Pyrolysis

Article Preview

Abstract:

In this work, ZnO thin films grown on heated glass substrates in a temperature range of 300 to 500 °C with a 50°C step. The prepared solution is composed of methanol and zinc acetate Zn(CH3COO)2.2H2O. ZnO thin films are deposited by pyrolysis spray technique, our work focuses on the study of the substrate temperature influence on the structural and optical properties of these layers. Therefore, The X-ray diffraction, showed a Wurtzit hexagonal structure of elaborated films, with (002) as a preferred orientation, and a grain size of 64 to 74 nm. The optical transmission spectroscopy UV-Visible, illustrated an increase of optical band gap from 3.19 to 3.25 eV, proportionally with the substrate temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-7

Citation:

Online since:

September 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.P. Rambu, V. Nica, M. Dobromir, Influence of Fe-doping on the optical and electrical properties of ZnO films, Superlattices and Microstructures, 59 (2013) 87-96.

DOI: 10.1016/j.spmi.2013.03.023

Google Scholar

[2] Y. Wang, C. Zhou, A.M. Elquist, A. Ghods, V.G. Saravade, N. Lu, I. Ferguson, A review of earth abundant ZnO-based materials for thermoelectric and photovoltaic applications, Proceedings Volume 10533, Oxide-based Materials and Devices, SPIE OPTO, 2018, San Francisco, California.

DOI: 10.1117/12.2302467

Google Scholar

[3] J. Song, S.A. Kulinich, J. Yan, Z. Li, J. He, C. Kan, H. Zeng, Epitaxial ZnO nanowire-on-nanoplate structures as efficient and transferable field emitters, Adv. Mater, 25/40 (2013) 5750-5755.

DOI: 10.1002/adma.201302293

Google Scholar

[4] C. Pan, L. Dong, G. Zhu, S. Niu, R. Yu, Q. Yang, Y. Liu, Z.L. Wang, High-resolution electroluminescence imaging of pressure distribution using a piezoelectric nanowire LED array, Nat. Photon, 7 (2013) 752-758.

DOI: 10.1038/nphoton.2013.191

Google Scholar

[5] H. Chen,  C. Tan,  D. Sun,  W. Zhao,  X. Tian  and  Y. Huang, Ultrawide range tuning of direct band gap in MgZnO monolayer via electric field effect, RSC Adv, 8 (2018) 1392-1397.

DOI: 10.1039/c7ra11766c

Google Scholar

[6] G. Bugnon, T. Söderström, S. Nicolay, L. Ding , M. Despeisse, A. Hedler, J. Eberhardt, C. Wachtendorf, C. Ballif, LPCVD ZnO-based intermediate reflector for micromorph tandem solar cells, Solar Energy Materials & Solar Cells, 95 (2011) 2161-2166.

DOI: 10.1016/j.solmat.2011.03.018

Google Scholar

[7] G.M. Ali, J.C. Moore, A.K. Kadhim, C. Thompson, Electrical and optical effects of Pd microplates embedded in ZnO thin film based MSM UV photodetectors: A comparative study, Sensors and Actuators, 209 (2014) 16-23.

DOI: 10.1016/j.sna.2014.01.010

Google Scholar

[8] M. Laurenti, V. Cauda, Porous Zinc Oxide Thin Films: Synthesis Approaches and Applications, Coatings, 8 (2018) 67.

DOI: 10.3390/coatings8020067

Google Scholar

[9] R. Swapna, M. Ashok, G. Muralidharan, M.C. Santhosh Kumar, Microstructural, electrical and optical properties of ZnO:Mo thin films with various thickness by spray pyrolysis, Journal of Analytical and Applied Pyrolysis, 102 (2013) 68-75.

DOI: 10.1016/j.jaap.2013.04.001

Google Scholar

[10] D.P. Norton, Y.W. Heo, M.P. Ivill, K. Lp, S.J. Pearton, M.F. Chisholm, T. Steiner, ZnO: Growth, Doping & Processing, Materials Today, 7 (2004) 34-40.

DOI: 10.1016/s1369-7021(04)00287-1

Google Scholar

[11] S. Suzuki, T. Miyata, M. Ishii, T. Minami, Transparent conducting V-co-doped AZO thin films prepared by magnetron sputtering, Thin Solid Films, 434 (2003) 14-19.

DOI: 10.1016/s0040-6090(03)00463-2

Google Scholar

[12] D.H. Zhang, D.E. Brodie, Transparent conducting ZnO films deposited by ion-beam-assisted reactive deposition,Thin Solid Films, 213 (1992) 109-112.

DOI: 10.1016/0040-6090(92)90483-r

Google Scholar

[13] R. Amari, A. Mahroug, A. Boukhari, B. Deghfel, N. Selmi, Structural, Optical and Luminescence Properties of ZnO Thin Films Prepared by Sol-Gel Spin-Coating Method: Effect of Precursor Concentration, Chin. Phys. Lett, 35 (1) (2018) 016801-016813.

DOI: 10.1088/0256-307x/35/1/016801

Google Scholar

[14] N. Abdelmalek, L. Hadjeris, D. Allouane, L. Herissi, S. Rahmane and H. Moualkia, Structural, Optical and Electrical Properties of ZnO:Fe Thin Films Grown by Spray Pyrolysis, J. New Technol. Mater. 4 (2014) 47-50.

DOI: 10.12816/0010332

Google Scholar

[15] A. Al-Ghamdi, O. Al-Hartomy, M. El Okr, A. Nawar, S. El-Gazzar, F. El-Tantawy, F. Yakuphanoglu, Semiconducting properties of Al doped ZnO thin films, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 131 (2014) 512-517.

DOI: 10.1016/j.saa.2014.04.020

Google Scholar

[16] H. Gómez-Pozos, E.J.L. Arredondo, Maldonado A. Álvarez, R. Biswal, Y. Kudriavtsev, J.V. Pérez, Y.L. Casallas-Moreno, M.L. Olvera Amador, Cu-Doped ZnO Thin Films Deposited by a Sol-Gel Process Using Two Copper Precursors: Gas-Sensing Performance in a Propane Atmosphere, Materials 9 (2016) 87.

DOI: 10.3390/ma9020087

Google Scholar

[17] Y.Z. Peng, T. Liew, W.D. Song, C.W. An, K.L. Teo, and T.C. Chong, Structural and Optical Properties of Co-Doped ZnO Thin Films, Journal of Superconductivity: Incorporating Novel Magnetism. 18 (2005) 97-103.

DOI: 10.1007/s10948-005-2158-4

Google Scholar

[18] M. Rouchdi, E. Salmani, B. Fares, N. Hassanain, A. Mzerd, Synthesis and characteristics of Mg doped ZnO thin films: Experimental and ab-initio study, Results in Physics. 7 (2017) 620-627.

DOI: 10.1016/j.rinp.2017.01.023

Google Scholar

[19] M.N. Amroun, M. Khadraoui, Effect of substrate temperature on the properties of SnS2 thin films, Optik (2019), https://doi.org/10.1016/j.ijleo.2019.03.011.

DOI: 10.1016/j.ijleo.2019.03.011

Google Scholar

[20] G. Ojeda-Barrero, A.I. Oliva-Avilés, A.I. Oliva, R.D. Maldonado, M. Acosta, G.M. Alonzo-Medina, Effect of the substrate temperature on the physical properties of sprayed-CdS films by using an automatized perfume atomizer, Materials Science in Semiconductor Processing 79 (2018) 7–13.

DOI: 10.1016/j.mssp.2018.01.018

Google Scholar

[21] A. Kennedy, V. Senthil Kumar, K. Pradeev Raj, Influence of substrate temperature on structural, morphological, optical and electrical properties of Bi-doped MnInS4 thin films prepared by nebuliser spray pyrolysis technique, Journal of Physics and Chemistry of Solids 110 (2017) 100–107.

DOI: 10.1016/j.jpcs.2017.06.004

Google Scholar

[22] F. Zahedi, R.S. Dariani, S.M. Rozati, Effect of substrate temperature on the properties of ZnO thin films prepared by spray pyrolysis, Materials Science in Semiconductor Processing 16 (2013) 245–249.

DOI: 10.1016/j.mssp.2012.11.005

Google Scholar

[23] C. Lévy-Clément, Nanostructured ETA-Solar Cells, in: T. Soga (Eds.), Nanostructured Materials for Solar Energy Conversion, Elsevier, Oxford, (2006) 447-484.

DOI: 10.1016/b978-044452844-5/50015-9

Google Scholar

[24] A.M. AL-Diabata, N.M. Ahmed, M.R. Hashim, K.M. Chahrour, M. Bououdina, Effect of Deposition Temperature on Structural and Optical Properties of Chemically Sprayed ZnS Thin Films, Procedia Chemistry 19 ( 2016 ) 485 – 491.

DOI: 10.1016/j.proche.2016.03.042

Google Scholar

[25] E. Karakose, H. Çolak, Effect of substrate temperature on the structural properties of ZnO nanorods, Energy 141 (2017) 50-55.

DOI: 10.1016/j.energy.2017.09.080

Google Scholar

[26] K. Ravichandran, N.J. Begum, S. Snega, B. Sakthivel, Properties of Sprayed Aluminium Doped Zinc Oxide Films - A Review, Materials and Manufacturing Processes, 31 (2016) 1411-1423.

DOI: 10.1080/10426914.2014.930961

Google Scholar

[27] J.S. Eensalu, M. Krunks, I. Gromyko, A. Katerski, A. Mere, A comparative study on physical properties of Al-doped zinc oxide thin films deposited from zinc acetate and zinc acetylacetonate by spray pyrolysis, ENERGETIKA. (2017) 46–55.

DOI: 10.6001/energetika.v63i2.3519

Google Scholar

[28] E. Arca, K. Fleischer and I. V. Shvets Influence of the Precursors and Chemical Composition of the Solution on the Properties of ZnO Thin Films Grown by Spray Pyrolysis, J. Phys. Chem. 113(2009) 21074–21081.

DOI: 10.1021/jp907990z

Google Scholar

[29] M.A. Lamrani, M. Addou, Z. Sofiani, B. Sahraoui, J. Ebothé, A. El Hichou, N. Fellahi, J.C. Bernède, R. Dounia, Cathodoluminescent and nonlinear optical properties of undoped and erbium doped nanostructured ZnO films deposited by spray pyrolysis, Optics Communications 277 (2007) 196–201.

DOI: 10.1016/j.optcom.2007.04.033

Google Scholar

[30] X. Chen, W. Guan, G. Fang, X.Z. Zhao, Influence of substrate temperature and post-treatment on the properties of ZnO:Al thin films prepared by pulsed laser deposition, Applied Surface Science, 252 (2005) 1561.

DOI: 10.1016/j.apsusc.2005.02.137

Google Scholar

[31] M.I. Khan, K.A. Bhatti, R. Qindeel, N. Alonizan, H. S. Althobaiti, Characterizations of multilayer ZnO thin films deposited by sol-gel spin coating technique, Results in Physics,7 (2017) 651.

DOI: 10.1016/j.rinp.2016.12.029

Google Scholar

[32] M. Benhaliliba, C.E. Benouis, Z. Mouffak, Y.S. Ocak, A. Tiburcio-Silver, M.S. Aida, A.A. Garcia, A. Tavira, A. Sanchez Juarez, Preparation and characterization of nanostructures of in-doped ZnO films deposited by chemically spray pyrolysis: Effect of substrate temperatures, Superlattices and Microstructures, 63 (2013) 228.

DOI: 10.1016/j.spmi.2013.09.010

Google Scholar

[33] A. Hafdallah, F. Yanineb, M.S. Aida, N. Attaf, In doped ZnO thin films, Journal of Alloys and Compounds, 509 (2011) 7267.

DOI: 10.1016/j.jallcom.2011.04.058

Google Scholar

[34] S, Benramache, O, Belahssen, A, A, Guettaf, A correlation for crystallite size of undoped ZnO thin film with the band gap energy - precursor molarity - substrate temperature, Optik, 125 (2014) 1303.

DOI: 10.1016/j.ijleo.2013.08.015

Google Scholar

[35] S.C. Shei, P.Y. Lee, S.J. Chang, Effect of temperature on the deposition of ZnO thin films by successive ionic layer adsorption and reaction, Applied Surface Science, 258 (2012) 8109.

DOI: 10.1016/j.apsusc.2012.05.004

Google Scholar

[36] E. Burstein, Anomalous optical absorption limit in InSb, Phys. Rev. 93 (1954) 632.

DOI: 10.1103/physrev.93.632

Google Scholar

[37] T.S. Moss, The interpretation of the properties of indium antimonide,, Proc. Phys. Soc. B67 (1954) 775.

Google Scholar