Optical Investigations of Nanophotonic LiNbO3 Films Deposited by Pulsed Laser Deposition Method

Article Preview

Abstract:

The nanocrystalline structure of Lithium niobate (LiNbO3) was prepared and deposited onto substrate made of quartz by utilize pulse laser deposition technique. The effect of substrate temperature on the structural, optical and morphological properties of lithium niobate photonic film grown was studied. The chemical mixture was prepared by mixing the raw material (Li2CO3, Nb2O5) with Ethanol liquid without any further purification, at time of stirrer 3hrs but without heating, then annealing process the formed material at 1000C° for 4hrs. We characterized and analyzed the LiNbO3 nanostructure thin films by utilize Ultra-Violet Visible (UV-vis). The UV-vis measurements show that, when the substrate temperature increases, the values of transmission, absorption and energy band gap will decreased, but the values of reflection and refractive index will increased. That means the LiNbO3 thin film prepared at substrate temperatures 300C° give the best result for manufacture the optical waveguide.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

16-22

Citation:

Online since:

January 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Marenna, C. Aruta, E. Fanelli, M. Barra, P. Pernice, A. Aronne, Sol–gel synthesis of nanocomposite materials based on lithium niobate nanocrystals dispersed in a silica glass matrixJournal of Solid State Chemistry, 182 (2009) 1229–1234.

DOI: 10.1016/j.jssc.2009.02.022

Google Scholar

[2] Salim, E.T., Fakhri, M.A., Ismail, R.A., Abdulwahhab, A.W., Salim, Z.T., Munshid, M.A., Hashim, U., Effect of light induced heat treatment on the structural and morphological properties of LinbO3 thin films, Superlattices and Microstructures 128 (2019) 67-75.

DOI: 10.1016/j.spmi.2019.01.016

Google Scholar

[3] Fakhri, M.A., Salim, E.T., Wahid, M.H.A., Abdulwahhab, A.W., Hashim, U., Salim, Z.T., Efficiency enhancement of optical strip waveguide by the effect of heat treatment, Optik 180 (2019) 768-774.

DOI: 10.1016/j.ijleo.2018.12.006

Google Scholar

[4] Agool, I.R., Salem, E.T., Hassan, M.A., Optical and electrical properties of SnO2thin film prepared using RTO method, International Journal of Modern Physics B, 25(8) (2011) 1081-1089.

DOI: 10.1142/s0217979211058614

Google Scholar

[5] Ch. Fan, B. Poumellec, M. Lancry, X. He, H. Zeng, et al., Three-dimensional photo precipitation of oriented LiNbO 3 -like crystals in silica-based glass with femtosecond laser irradiation, Opt Lett 37 (2012) 2955-7.

DOI: 10.1364/ol.37.002955

Google Scholar

[6] Salem, E.T., Ismail, R.A., Fakhry, M.A., Yusof, Y., Reactive PLD of ZnO thin film for optoelectronic application, International Journal of Nanoelectronics and Materials 9(2) (2016) 111-122.

Google Scholar

[7] Z.T. Salim, U. Hashim, M.K.Md. Arshad, M.A. Fakhri, E.T. Salim, Frequency-based detection of female Aedes mosquito using surface acoustic wave technology: Early prevention of dengue fever, Microelectron Eng, 179(5) 2017 83-90.

DOI: 10.1016/j.mee.2017.04.016

Google Scholar

[8] X. Xu ; Y. Q. Cao ; P. Lu ; J. Xu ; W. Li ; K. J. Chen, Electroluminescence devices based on Si quantum dots/SiC multilayers embedded in PN junction, IEEE Photon. J. 6(1) (2014) 2200207–2200213.

DOI: 10.1109/jphot.2013.2295467

Google Scholar

[9] Meinan L., Dongfeng X., Shouchen Z., Haiyang Z., Jiyang W., Kenji K., Chemical synthesis of stoichiometric lithium niobate powders, Mater. Lett. 59(8-9) (2005) 1095–1097.

Google Scholar

[10] N.S.L.S. Vasconcelos, J.S. Vasconcelos, V.Bouquet, S.M. Zanetti, E.R. Leite, E.Longo, L.E.B. Soledade, F.M. Pontes, M.Guilloux-Viry, A.Perrin, M.I. Bernardi, J.A. Varelaa, Epitaxial growth of LiNbO3 thin films in a microwave oven, Thin Solid Films 436 (2003) 213–219.

DOI: 10.1016/s0040-6090(03)00587-x

Google Scholar

[11] Salem, E.T., Agool, I.R., Hassan, M.A., Construction of SnO2/SiO2/Si heterojunction and its lineup using I-V and C-V measurements, International, Journal of Modern Physics B 25(29) (2011) 3863-3869.

DOI: 10.1142/s0217979211102022

Google Scholar

[12] Abdulrazaq, O.A., Saleem, E.T., Inexpensive near-IR photodetector, Turkish Journal of Physics, 30(1) (2006) 35-39.

Google Scholar

[13] Salim, Z.T., Hashim, U., Arshad, M.K.M., Fakhri, M.A., Salim, E.T., Zinc oxide flakes-corolla lobes like nano combined structure for SAW applications, Materials Research Bulletin 86 (2017) 215-219.

DOI: 10.1016/j.materresbull.2016.11.015

Google Scholar

[14] E.L. Wooten K.M. Kissa, A.Yi-Yan, E.J. Murphy, D.A. Lafaw, P.F. Hallemeier, D. Maack, D.V. Attanasio, D.J. Fritz, G. J. McBrien, D.E. Bossi, IEEE Jouranl of Sselected Topics in Quqntum Electronics 6 (2000) 69-82.

DOI: 10.1109/2944.826874

Google Scholar

[15] T. Zhang, B. Wang, Y. Zhao, S. Fang, D. Ma, Y. Xu, Optical homogeneity and second harmonic generation in Li-rich Mg-doped LiNbO3 crystalsMaterials Chemistry and Physics 88 (2004) 97-101.

DOI: 10.1016/j.matchemphys.2004.06.026

Google Scholar

[16] P. Galinetto, M. Marinone, D. Grando, G. Samoggia, F. Caccavale, A. Morbiato, M. Musolino, Micro-Raman analysis on LiNbO3 substrates and surfaces: Compositional homogeneity and effects of etching and polishing processes on structural propertiesOptics and Lasers in Engineering, 45, 380–384, (2007).

DOI: 10.1016/j.optlaseng.2005.05.007

Google Scholar

[17] W. Kim, S. Kwon, W. Jeong, G. Son, K. Lee, W. Choi, W. Yang, H. Lee, H. Lee, Integrated optical modulator for signal up-conversion over radio-on-fiber link, Optics Express 17 (2009) 2638 -2645.

DOI: 10.1364/oe.17.002638

Google Scholar

[18] J. Guo, J. Zhu, W. Zhou, X. Huang, A plasmonic electro-optical variable optical attenuator based on side-coupled metal–dielectric–metal structure Optics mmunications, 294 (2013) 405–408.

DOI: 10.1016/j.optcom.2012.12.063

Google Scholar

[19] Marwa Abdul Muhsien, Evan T. Salem, Ibrahim R. Agool, Haidar Hamed Hamdan, Gas sensing of Au/n-SnO2/p-PSi/c-Si heterojunction devices prepared by rapid thermal oxidation, Applied Nanoscience 4 (2014) 719–732.

DOI: 10.1007/s13204-013-0244-7

Google Scholar

[20] D. Janner1, D.Tulli , M. Garc´ıa-Granda, M. Belmonte, and V.Pruneri, Micro structured integrated electro optic LiNbO3 modulators Laser & Photon. Rev. 3 (2009) 301–313.

DOI: 10.1002/lpor.200810073

Google Scholar

[21] M.R.R. Gesualdi, C. Jacinto, T. Catunda, M. Muramatsu, V. Pilla, Thermal lens spectrometry in pyroelectric lithium niobate crystalsAppl. Phys. B, 93 (2008) 879–883.

DOI: 10.1007/s00340-008-3241-x

Google Scholar

[22] V. Ievlev , V. Shur , M. Sumets and A. Kostyuchenko, Electrical properties and local domain structure of LiNbO3 thin film grown by ion beam sputtering method, Acta Metallurgica Sinica (English Letters) 26 (2013) 630-634.

DOI: 10.1007/s40195-013-0025-z

Google Scholar

[23] P. Kumar, S M. Babui , S Perero, R. L. Sai, I Bhaumik, S Ganesamoorthy, A. K. Karnal, X-ray photoelectron spectroscopy, high-resolution X-ray diffraction and refractive index analyses of Ti- doped lithium niobate (Ti:LiNbO3) nonlinear optical single crystal, Pramana J. Phys. 75 (2010) 1035 - 1040.

DOI: 10.1007/s12043-010-0159-8

Google Scholar

[24] N. E. Stankovaa, S. H. Tonchevb, E. Gyorgyc, G. Socolc, I. Mihailescuc, Pulsed laser deposition of LiNbO3 thin films from Li-rich targets, Journal of Optoelectronics and Advanced Materials 6 (2014) 1345 – 1348.

Google Scholar

[25] L. Chen, Q. Xu, M.G. Wood, R.M. Reano, Hybrid silicon and lithium niobate electro-optical ring modulator, Optica 1 (2014)112–118.

DOI: 10.1364/optica.1.000112

Google Scholar

[26] W. Kim, S.-W. Kwon, W. Jeong, G. Son, K. Lee, W. Choi, W. Yang, H. Lee, H. Lee, Integrated optical modulator for signal upconversion over radio-on-fiber link, Opt. Express 17 (2009) 2638–2645.

DOI: 10.1364/oe.17.002638

Google Scholar

[27] Z.T. Salim, U. Hashim, M.K. Md Arshad, M.A. Fakhri, Simulation, Fabrication and Validation of Surface Acoustic Wave Layered Sensor Based on ZnO/IDT/128 YX LiNbO3 . Int. J. Appl. Eng. Res. 11 (2016) 8785–8790.

Google Scholar

[28] Z, Zhou, B. Wang, Sh. Lin, Y. Li and K. Wang, Investigation of optical photorefractive properties of Zr:Fe:LiNbO3 crystals. Opt. Laser Technol. 44 (2012) 337–340.

DOI: 10.1016/j.optlastec.2011.07.010

Google Scholar

[29] P. Gangul, "Semi-analytical analysis of lithium niobate photonic wires, Opt. Commun. 285 (21/22) (2012) 4347–4352.

DOI: 10.1016/j.optcom.2012.06.086

Google Scholar

[30] Chen, H., T. Lv, A. Zheng, Y. Han, Discrete diffraction based on electro-optic effect in periodically poled lithium niobate. Optics Communications, 294 (2013) 202–207.

DOI: 10.1016/j.optcom.2013.01.007

Google Scholar

[31] W-K. Kim, S-W. Kwon, W-J. Jeong, G-S. Son, K-H. Lee, W-Y. Choi, W-S. Yang, H-M. Lee and H-Y. Lee. Integrated optical modulator for signal upconversion over radio-on-fiber link, Optics Express 17 (2009) 2638 -2645.

DOI: 10.1364/oe.17.002638

Google Scholar

[32] Y. Tan, F. Chen, M. Stepić, V. Shandarov, and D Kip. Reconfigurable optical channel waveguides in lithium niobate crystals produced by a combination of low-dose O3+ ion implantation and selective white light illumination, Optics Express 16 (2008) 10465- 10470.

DOI: 10.1364/oe.16.010465

Google Scholar

[33] H. K Lam, J. Y Dai, H. L. W Chan. Orientation controllable deposition of LiNbO3 films on sapphire and diamond substrates for surface acoustic wave device application, Journal of Crystal Growth 268 (2004) 144–148.

DOI: 10.1016/j.jcrysgro.2004.04.111

Google Scholar

[34] R.Grange, J-W. Choi, Ch-L. Hsieh, Y. Pu, A. Magrez, R. Smajda, L. Forró and D. Psaltis. Lithium niobate nanowires synthesis, optical properties, and manipulation, Applied Physics Letters 95 (2009) 143105 - 143105-3.

DOI: 10.1063/1.3236777

Google Scholar

[35] Fakhri, M.A., Al-Douri, Y., Hashim, U., Salim, E.T., Optical investigations of photonics lithium niobate, Solar Energy 120 (2015) 381-388.

DOI: 10.1016/j.solener.2015.07.044

Google Scholar

[36] Y. Akiyama, K. Shitanaka, H. Murakami, Y. Shin, M. Yoshida, N. Imaishi, Thin Solid Films, 515 (2007) 4975–4979.

DOI: 10.1016/j.tsf.2006.10.034

Google Scholar

[37] Abood, M.K., Salim, E.T., Saimon, J.A., Niobium pentoxide thin film prepared using simple colloidal suspension for optoelectronic application, International Journal of Nanoelectronics and Materials 11(2) (2018) 127-134.

Google Scholar

[38] R. Ageba, Y. Kadota, T. Maeda, N. Takiguchi, T. Morita, M. Ishikawa, Journal of the Korean Physical Society 57 (2010) 918-923.

DOI: 10.3938/jkps.57.918

Google Scholar

[39] K. Peithmann, M. R. Zamani-Meymian, M. Haaks, K. Maier, B. Andreas, K. Buse, H. Modrow, Fabrication of embedded waveguides in lithium-niobate crystals by radiation damage, Appl. Phys. B. 82 (2006) 419 - 422.

DOI: 10.1007/s00340-005-2002-3

Google Scholar

[40] E. R. Camargo, M. Kakihana, Low temperature synthesis of lithium niobate powders based on water-soluble niobium malato complexes, Solid State Ionics. 151 (2002) 413 – 418.

DOI: 10.1016/s0167-2738(02)00547-7

Google Scholar

[41] N. Ozer, C. M. Lampert, Electrochemical lithium insertion in sol-gel deposited Li/NbO 3 films. Solar Energy Materials and Solar Cells 39 (1995) 367 - 375.

DOI: 10.1016/0927-0248(96)80002-x

Google Scholar

[42] B. Knabe, D. Schu. Tze, T. Jungk, M. Svete, W. Ssenmacher, W. Mader, K. Buse, Synthesis and characterization of Fe-doped LiNbO3 nanocrystals from a triple-alkoxide method, Phys. Status Solidi A. 208 (2011) 857 - 862.

DOI: 10.1002/pssa.201026546

Google Scholar

[43] Makram. A. Fakhri, Y. Al-Douri, Uda. Hashim, Evan. T. Salim, Annealing Temperature Effects on Morphological and Optical Studies of Nano and Micro Photonics Lithium Niobate using for Optical Waveguide ApplicationsAustralian Journal of Basic and Applied Sciences 9, 128-133, (2015).

DOI: 10.1016/j.solener.2015.07.044

Google Scholar

[44] Halboos, H.T., Salim, E.T, Silver Doped Niobium Pentoxide nanostructured thin film, Optical Structural and Morphological Properties, IOP Conference Series: Materials Science and Engineering 454(1) (2018).

DOI: 10.1088/1757-899x/454/1/012174

Google Scholar

[45] Makram A Fakhri, Y Al-Douri, Uda Hashim, Evan T Salim, XRD analysis and morphological studies of spin coated LiNbO3 nano photonic crystal prepared for optical waveguide application, Advanced Materials Research 1133 (2016) 457-461.

DOI: 10.4028/www.scientific.net/amr.1133.457

Google Scholar

[46] Makram A Fakhri, Y Al-Douri, Evan T Salim, Uda Hashim, Yushamdan Yusof, EeBee Choo, Zaid T Salim, Yaseen N Jurn, Structural properties and surface morphology analysia of nanophotonic LiNbO 3, ARPN J. Eng. Appl. Sci 11 (2016) 4974-4978.

Google Scholar

[47] Evan T Salim, Jehan Admon Saimon, Marwa K Abood, Makram A Fakhri, Some physical properties of Nb2O5 thin films prepared using nobic acid based colloidal suspension at room temperature, Materials Research Express 4(10) (2017) 106407.

DOI: 10.1088/2053-1591/aa90a6

Google Scholar

[48] V. Ievlev, M. Sumets, A. Kostyuchenko, N. Bezryadin, Dielectric losses and ac conductivity of Si–LiNbO3 heterostructures grown by the RF magnetron sputtering methodJournal of Materials Science: Materials in Electronics 24 (2013). 1651-1657.

DOI: 10.1007/s10854-012-0990-4

Google Scholar

[49] Y. Kang, S. Jeong, S. Lee, J. Hwang, J. Kim, C. Cho, Hetero-epitaxial growth of LiNbO3 thin film on GaN/Al2O3 by pulsed laser deposition, Journal of the Korean Physical Society, 49 (2006) S625-S628.

Google Scholar

[50] Ismail, R.A., Salim, E.T., Hamoudi, W.K., Characterization of nanostructured hydroxyapatite prepared by Nd:YAG laser deposition, Materials Science and Engineering C, 33(1) (2013) 47-52.

DOI: 10.1016/j.msec.2012.08.002

Google Scholar

[51] Salim, E.T., Rapid thermal oxidation for silicon nanocrystal based solar cell, International Journal of Nanoelectronics and Materials, 5(2) (2012) 95-100.

Google Scholar

[52] Salim, E.T., Optoelectronic properties of Fe2O3/Si heterojunction prepared by rapid thermal oxidation method, Indian Journal of Physics, 87(4) (2013) 349-353.

DOI: 10.1007/s12648-012-0229-5

Google Scholar