The Preparation and Characterization of Fe-ZnO Nanoparticles Immobilized onto Fiberglass Cloth

Article Preview

Abstract:

Lousy odor is severe pollution in natural rubber processing industries and the air pollution treatment by using photocatalytic decomposition method has not much known. This study aims to explore the photocatalyst preparation and characterization of Fe doped ZnO immobilized on fiberglass cloth. Fe doped ZnO was prepared both with and without co-precipitation agent of NaOH. Both methods confirmed the metal existence and gave crystallite catalyst particles with mean diameters of 50 nm according to XRD characterization methods. SEM-EDS analysis showed Fe-ZnO particles prepared without co-precipitation were less aggregated particles than those made with the other method. EDS data identified the elemental composition of Zn, Fe, and O, and the fiberglass cloth composition, including Si and Mg. In the co-preparation method, sodium was always existed along with Fe and ZnO. DR-UV analysis showed the bandgap of Fe-ZnO was 3.20 and 3.22 eV without and with co-precipitation methods, respectively. TEM analysis of the catalyst slurry shows all particles were agglomerated in both preparations. Spherical-like particles existed non-precipitation method, and a spherical- and rod particle shapes were detected in co-precipitation preparation. The non-co-precipitation process was a preparable step in immobilization of the Fe-ZnO particles onto fiberglass cloth

You might also be interested in these eBooks

Info:

Periodical:

Pages:

115-124

Citation:

Online since:

July 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Dunuwila, V.H.L. Rodrigo, N. Goto, Sustainability of natural rubber processing can improved: A case study with crepe rubber manufacturing in Sri Lanka, Resour. Conserv. Recy. 133 (2018) 417-427.

DOI: 10.1016/j.resconrec.2018.01.029

Google Scholar

[2] P. Danwanichakul, B. Than-ardna, Permeation of salicylic acid through skim natural rubber films, Ind. Crop. Prod. 122 (2018) 166-173.

DOI: 10.1016/j.indcrop.2018.05.066

Google Scholar

[3] M. Adlim, F. Zarlaida, R.F.I. Rahmayani, R. Wardani, Preparation and characterization natural rubber-urea-tablets coated by chitosan, IOP Conf. Series: Mat. Sci. Eng. 380 (2018) 012010.

DOI: 10.1088/1757-899x/380/1/012010

Google Scholar

[4] M. Adlim, F. Zarlaida, R.F.I. Rahmayani, R. Wardani, Nutrient release properties of a urea-magnesium-natural rubber composite coated with chitosan, Environ. Technol. Inno. 16 (2019) 100442.

DOI: 10.1016/j.eti.2019.100442

Google Scholar

[5] N.H. Kamarulzaman, H. Le-Minh, R.M. Stuetz, Identification of VOCs from natural rubber by different headspace techniques coupled using GC-MS, Talanta. 191 (2019) 535-544.

DOI: 10.1016/j.talanta.2018.09.019

Google Scholar

[6] N. Juntarachat, N. Bouvier, J.P. Lepoutre, J.M. Salmon, P. Rigou, P. Charlier, Identification by GC-O and GC-MS of New Odorous Compounds in Natural Rubber, J. Appl. Polym. 130 (2013) 1863-1872.

DOI: 10.1002/app.39356

Google Scholar

[7] M.A. Sidheswaran, H. Destaillats, D.P. Sullivan, S. Cohn, W.J. Fisk, Energy efficient indoor VOC air cleaning with activated carbon fiber (ACF) filters, Build. Environ. 47 (2012) 357-367.

DOI: 10.1016/j.buildenv.2011.07.002

Google Scholar

[8] N. Xue, Q. Wang, J. Wang, J. Wang, X. Sun, Odorous composting gas abatement and microbial community diversity in a bio-trickling filter, Int. Biodeter. Biodegr. 82 (2013) 73-80.

DOI: 10.1016/j.ibiod.2013.03.003

Google Scholar

[9] A. Mondal, N. Giri, S. Sarkar, S. Majumdar, R. Ray, Tuning the photocatalytic activity of ZnO by TM (TM = Fe, Co, Ni) doping, Mat. Sci. Semicon. Proc. 91 (2019) 333-340.

DOI: 10.1016/j.mssp.2018.12.003

Google Scholar

[10] P. Pascariu, I.V. Tudose, M. Suchea, E. Koudoumas, N. Fifere, A. Airinei, Preparation and characterization of Ni, Co doped ZnO nanoparticles for photocatalytic applications, Appl. Surf. Sci. 448 (2018) 481-488.

DOI: 10.1016/j.apsusc.2018.04.124

Google Scholar

[11] A. Hui, J. Ma, J. Liu, Y. Bao, J. Zhang, Morphological evolution of Fe doped sea urchin-shaped ZnO nanoparticles with enhanced photocatalytic activity, J. Alloy Compd. 696 (2017) 639-647.

DOI: 10.1016/j.jallcom.2016.10.319

Google Scholar

[12] S. Yi, J. Cuia, S. Lia, L. Zhanga, D. Wanga, Y. Lina, Enhanced visible-light photocatalytic activity of Fe/ZnO for rhodamine B degradation and its photogenerated charge transfer properties, Appl. Surf. Sci. 319 (2014) 230-236.

DOI: 10.1016/j.apsusc.2014.06.151

Google Scholar

[13] M.A. Ciciliati, M.F. Silva, D.M. Fernandes, M.A.C. de Melo, A.A.W. Hechenleitner, E.A.G. Pineda, Fe-doped ZnO nanoparticles: Synthesis by a modified sol-gel method and characterization, Mater. Lett. 159 (2015) 84-86.

DOI: 10.1016/j.matlet.2015.06.023

Google Scholar

[14] S. Dong, K. Xu, J. Liu, H. Cui, Photocatalytic performance of ZnO:Fe array films under sunlight irradiation, Physica B. 406 (2011) 3609-3612.

DOI: 10.1016/j.physb.2011.06.053

Google Scholar

[15] T.L. Myers, C.S. Brauer, Y.F. Su, T.A. Blake, R.G. Tonkyn, A.B. Ertel, T.J. Johnson, R.L. Richardson, Quantitative reflectance spectra of solid powders as a function of particle size, Appl. Opt. 54 (2015) 4863-4875.

DOI: 10.1364/ao.54.004863

Google Scholar

[16] C.D. Cooper, J.F. Mustard, Effects of Very Fine Particle Size on Reflectance Spectra of Smectite and Palagonitic, Soil Icarus. 142 (1999) 557-570.

DOI: 10.1006/icar.1999.6221

Google Scholar

[17] A. Adlim, M.A. Bakar, Preparation of chitosan-gold nanoparticles: part 2. the role of chitosan. Indo. J. Chem. 8[3] (2008) 320-326.

DOI: 10.22146/ijc.21585

Google Scholar

[18] H.G. Hecht, Comparison of continuum models in quantitative diffuse reflectance spectrometry, Anal. Chem. 48 (1976) 1775-1779.

DOI: 10.1021/ac50006a037

Google Scholar

[19] V. Mishraa, M.K. Warshia, A. Satia, A. Kumara, V. Mishrab, A. Sagdeoc, R. Kumara, P.R. Sagdeo, Diffuse reflectance spectroscopy: An effective tool to probe the defect states in wide band gap semiconducting materials, Mat. Sci. Semicon. Proc. 86 (2018) 151-156.

DOI: 10.1016/j.mssp.2018.06.025

Google Scholar

[20] S. Akir, A. Barras, Y. Coffinier, M. Bououdina, R. Boukherroub, A.D. Omrani, Eco-friendly synthesis of ZnO nanoparticles with different morphologies and their visible light photocatalytic performance for the degradation of Rhodamine B, Ceram. Int. 42 (2016) 10259-10265.

DOI: 10.1016/j.ceramint.2016.06.187

Google Scholar

[21] W. Bousslamaa, H. Elhouicheta, M. Férid, Enhanced photocatalytic activity of Fe doped ZnO nanocrystals under sunlight irradiation, Optik. 134 (2017) 88-98.

DOI: 10.1016/j.ijleo.2017.01.025

Google Scholar

[22] K. Kumar, M. Chitkara, I.S. Sandhu, D. Mehta, S. Kumar, Photocatalytic, optical and magnetic properties of Fe-doped ZnO nanoparticles prepared by chemical route, J. Alloy Compd. 588 (2014) 681-689.

DOI: 10.1016/j.jallcom.2013.11.127

Google Scholar

[23] Q. Ma, X. Lv, Y. Wang, J. Chen, Optical and photocatalytic properties of Mn doped flower-like ZnO hierarchical structures, Opt. Mater. 60 (2016) 86-93.

DOI: 10.1016/j.optmat.2016.07.014

Google Scholar

[24] H. Jafaria, S. Sadeghzadeha, M. Rabbanib, R. Rahimi, Effect of Nb on the structural, optical and photocatalytic properties of Al- doped ZnO thin films fabricated by the sol-gel method, Ceram. Int. 44 (2018) 20170-20177.

DOI: 10.1016/j.ceramint.2018.07.311

Google Scholar

[25] H. Mori, Extraction of silicon dioxide from waste colored glasses by alkali fusion using potassium hydroxide, J. Mater. Sci. 38 (2003) 3461-3468.

Google Scholar

[26] E. Szymańska, K. Winnicka, Stability of Chitosan-A Challenge for Pharmaceutical and Biomedical Applications, Mar. Drugs 13 (2015) 1819-1846.

DOI: 10.3390/md13041819

Google Scholar

[27] V.D. Hodoroaba, S. Rades, T. Salge, J. Mielke, E. Ortel, R. Schmidt, Characterization of nanoparticles by means of high-resolution SEM/EDS in transmission mode, Mat. Sci. Eng. 109 (2016) 1-12.

DOI: 10.1088/1757-899x/109/1/012006

Google Scholar

[28] A. Patri, T. Umbreit, J. Zheng, K. Nagashima, P. Goering, S. Francke-Carroll, E. Gordon, J. Weaver, T. Miller, N. Sadrieh, S. McNeila, M. Stratmeyer, Energy dispersive X-ray analysis of titanium dioxide nanoparticle distribution after intravenous and subcutaneous injection in mice, J. Appl. Toxicol. 29 (2009) 662-672.

DOI: 10.1002/jat.1454

Google Scholar

[29] M. Scimeca, S. Bischetti, H.K. Lamsira, R. Bonfiglio, E. Bonanno, Energy dispersive x-ray (EDX) microanalysis: A powerful tool in biomedical research and diagnosis, Eur. J. Histochem. 62 [2841] (2018) 89-98.

DOI: 10.4081/ejh.2018.2841

Google Scholar

[30] S. Suresh, T.J. Bandosz, Removal of formaldehyde on carbon-based materials: A review of the recent approaches and findings, Carbon 137 (2018) 207-221.

DOI: 10.1016/j.carbon.2018.05.023

Google Scholar

[31] A. Ruíz-Baltazar, R. Esparza, G. Rosas, R. Pérez, Effect of the Surfactant on the Growth and Oxidation of Iron Nanoparticles, J. Nanomater. 2015 (2015) 1-8.

DOI: 10.1155/2015/240948

Google Scholar

[32] M.J. Sweet, A. Chessher, I. Singleton, Chapter five-review: metal-based nanoparticles; size, function, and areas for advancement in applied microbiology, Adv. Appl. Microbiol. 80 (2012) 113-142.

DOI: 10.1016/b978-0-12-394381-1.00005-2

Google Scholar

[33] Y. Cherifi, A. Chaouchi, Y. Lorgoilloux, M. Rguiti, A. Kadri, C. Courtois, Electrical, dielectric and photocatalytic properties of Fe-doped ZnO nanomaterials synthesized by sol-gel method, Process Appl. Ceram. 10 (2016) 125-135.

DOI: 10.2298/pac1603125c

Google Scholar