[1]
P. Dunuwila, V.H.L. Rodrigo, N. Goto, Sustainability of natural rubber processing can improved: A case study with crepe rubber manufacturing in Sri Lanka, Resour. Conserv. Recy. 133 (2018) 417-427.
DOI: 10.1016/j.resconrec.2018.01.029
Google Scholar
[2]
P. Danwanichakul, B. Than-ardna, Permeation of salicylic acid through skim natural rubber films, Ind. Crop. Prod. 122 (2018) 166-173.
DOI: 10.1016/j.indcrop.2018.05.066
Google Scholar
[3]
M. Adlim, F. Zarlaida, R.F.I. Rahmayani, R. Wardani, Preparation and characterization natural rubber-urea-tablets coated by chitosan, IOP Conf. Series: Mat. Sci. Eng. 380 (2018) 012010.
DOI: 10.1088/1757-899x/380/1/012010
Google Scholar
[4]
M. Adlim, F. Zarlaida, R.F.I. Rahmayani, R. Wardani, Nutrient release properties of a urea-magnesium-natural rubber composite coated with chitosan, Environ. Technol. Inno. 16 (2019) 100442.
DOI: 10.1016/j.eti.2019.100442
Google Scholar
[5]
N.H. Kamarulzaman, H. Le-Minh, R.M. Stuetz, Identification of VOCs from natural rubber by different headspace techniques coupled using GC-MS, Talanta. 191 (2019) 535-544.
DOI: 10.1016/j.talanta.2018.09.019
Google Scholar
[6]
N. Juntarachat, N. Bouvier, J.P. Lepoutre, J.M. Salmon, P. Rigou, P. Charlier, Identification by GC-O and GC-MS of New Odorous Compounds in Natural Rubber, J. Appl. Polym. 130 (2013) 1863-1872.
DOI: 10.1002/app.39356
Google Scholar
[7]
M.A. Sidheswaran, H. Destaillats, D.P. Sullivan, S. Cohn, W.J. Fisk, Energy efficient indoor VOC air cleaning with activated carbon fiber (ACF) filters, Build. Environ. 47 (2012) 357-367.
DOI: 10.1016/j.buildenv.2011.07.002
Google Scholar
[8]
N. Xue, Q. Wang, J. Wang, J. Wang, X. Sun, Odorous composting gas abatement and microbial community diversity in a bio-trickling filter, Int. Biodeter. Biodegr. 82 (2013) 73-80.
DOI: 10.1016/j.ibiod.2013.03.003
Google Scholar
[9]
A. Mondal, N. Giri, S. Sarkar, S. Majumdar, R. Ray, Tuning the photocatalytic activity of ZnO by TM (TM = Fe, Co, Ni) doping, Mat. Sci. Semicon. Proc. 91 (2019) 333-340.
DOI: 10.1016/j.mssp.2018.12.003
Google Scholar
[10]
P. Pascariu, I.V. Tudose, M. Suchea, E. Koudoumas, N. Fifere, A. Airinei, Preparation and characterization of Ni, Co doped ZnO nanoparticles for photocatalytic applications, Appl. Surf. Sci. 448 (2018) 481-488.
DOI: 10.1016/j.apsusc.2018.04.124
Google Scholar
[11]
A. Hui, J. Ma, J. Liu, Y. Bao, J. Zhang, Morphological evolution of Fe doped sea urchin-shaped ZnO nanoparticles with enhanced photocatalytic activity, J. Alloy Compd. 696 (2017) 639-647.
DOI: 10.1016/j.jallcom.2016.10.319
Google Scholar
[12]
S. Yi, J. Cuia, S. Lia, L. Zhanga, D. Wanga, Y. Lina, Enhanced visible-light photocatalytic activity of Fe/ZnO for rhodamine B degradation and its photogenerated charge transfer properties, Appl. Surf. Sci. 319 (2014) 230-236.
DOI: 10.1016/j.apsusc.2014.06.151
Google Scholar
[13]
M.A. Ciciliati, M.F. Silva, D.M. Fernandes, M.A.C. de Melo, A.A.W. Hechenleitner, E.A.G. Pineda, Fe-doped ZnO nanoparticles: Synthesis by a modified sol-gel method and characterization, Mater. Lett. 159 (2015) 84-86.
DOI: 10.1016/j.matlet.2015.06.023
Google Scholar
[14]
S. Dong, K. Xu, J. Liu, H. Cui, Photocatalytic performance of ZnO:Fe array films under sunlight irradiation, Physica B. 406 (2011) 3609-3612.
DOI: 10.1016/j.physb.2011.06.053
Google Scholar
[15]
T.L. Myers, C.S. Brauer, Y.F. Su, T.A. Blake, R.G. Tonkyn, A.B. Ertel, T.J. Johnson, R.L. Richardson, Quantitative reflectance spectra of solid powders as a function of particle size, Appl. Opt. 54 (2015) 4863-4875.
DOI: 10.1364/ao.54.004863
Google Scholar
[16]
C.D. Cooper, J.F. Mustard, Effects of Very Fine Particle Size on Reflectance Spectra of Smectite and Palagonitic, Soil Icarus. 142 (1999) 557-570.
DOI: 10.1006/icar.1999.6221
Google Scholar
[17]
A. Adlim, M.A. Bakar, Preparation of chitosan-gold nanoparticles: part 2. the role of chitosan. Indo. J. Chem. 8[3] (2008) 320-326.
DOI: 10.22146/ijc.21585
Google Scholar
[18]
H.G. Hecht, Comparison of continuum models in quantitative diffuse reflectance spectrometry, Anal. Chem. 48 (1976) 1775-1779.
DOI: 10.1021/ac50006a037
Google Scholar
[19]
V. Mishraa, M.K. Warshia, A. Satia, A. Kumara, V. Mishrab, A. Sagdeoc, R. Kumara, P.R. Sagdeo, Diffuse reflectance spectroscopy: An effective tool to probe the defect states in wide band gap semiconducting materials, Mat. Sci. Semicon. Proc. 86 (2018) 151-156.
DOI: 10.1016/j.mssp.2018.06.025
Google Scholar
[20]
S. Akir, A. Barras, Y. Coffinier, M. Bououdina, R. Boukherroub, A.D. Omrani, Eco-friendly synthesis of ZnO nanoparticles with different morphologies and their visible light photocatalytic performance for the degradation of Rhodamine B, Ceram. Int. 42 (2016) 10259-10265.
DOI: 10.1016/j.ceramint.2016.06.187
Google Scholar
[21]
W. Bousslamaa, H. Elhouicheta, M. Férid, Enhanced photocatalytic activity of Fe doped ZnO nanocrystals under sunlight irradiation, Optik. 134 (2017) 88-98.
DOI: 10.1016/j.ijleo.2017.01.025
Google Scholar
[22]
K. Kumar, M. Chitkara, I.S. Sandhu, D. Mehta, S. Kumar, Photocatalytic, optical and magnetic properties of Fe-doped ZnO nanoparticles prepared by chemical route, J. Alloy Compd. 588 (2014) 681-689.
DOI: 10.1016/j.jallcom.2013.11.127
Google Scholar
[23]
Q. Ma, X. Lv, Y. Wang, J. Chen, Optical and photocatalytic properties of Mn doped flower-like ZnO hierarchical structures, Opt. Mater. 60 (2016) 86-93.
DOI: 10.1016/j.optmat.2016.07.014
Google Scholar
[24]
H. Jafaria, S. Sadeghzadeha, M. Rabbanib, R. Rahimi, Effect of Nb on the structural, optical and photocatalytic properties of Al- doped ZnO thin films fabricated by the sol-gel method, Ceram. Int. 44 (2018) 20170-20177.
DOI: 10.1016/j.ceramint.2018.07.311
Google Scholar
[25]
H. Mori, Extraction of silicon dioxide from waste colored glasses by alkali fusion using potassium hydroxide, J. Mater. Sci. 38 (2003) 3461-3468.
Google Scholar
[26]
E. Szymańska, K. Winnicka, Stability of Chitosan-A Challenge for Pharmaceutical and Biomedical Applications, Mar. Drugs 13 (2015) 1819-1846.
DOI: 10.3390/md13041819
Google Scholar
[27]
V.D. Hodoroaba, S. Rades, T. Salge, J. Mielke, E. Ortel, R. Schmidt, Characterization of nanoparticles by means of high-resolution SEM/EDS in transmission mode, Mat. Sci. Eng. 109 (2016) 1-12.
DOI: 10.1088/1757-899x/109/1/012006
Google Scholar
[28]
A. Patri, T. Umbreit, J. Zheng, K. Nagashima, P. Goering, S. Francke-Carroll, E. Gordon, J. Weaver, T. Miller, N. Sadrieh, S. McNeila, M. Stratmeyer, Energy dispersive X-ray analysis of titanium dioxide nanoparticle distribution after intravenous and subcutaneous injection in mice, J. Appl. Toxicol. 29 (2009) 662-672.
DOI: 10.1002/jat.1454
Google Scholar
[29]
M. Scimeca, S. Bischetti, H.K. Lamsira, R. Bonfiglio, E. Bonanno, Energy dispersive x-ray (EDX) microanalysis: A powerful tool in biomedical research and diagnosis, Eur. J. Histochem. 62 [2841] (2018) 89-98.
DOI: 10.4081/ejh.2018.2841
Google Scholar
[30]
S. Suresh, T.J. Bandosz, Removal of formaldehyde on carbon-based materials: A review of the recent approaches and findings, Carbon 137 (2018) 207-221.
DOI: 10.1016/j.carbon.2018.05.023
Google Scholar
[31]
A. Ruíz-Baltazar, R. Esparza, G. Rosas, R. Pérez, Effect of the Surfactant on the Growth and Oxidation of Iron Nanoparticles, J. Nanomater. 2015 (2015) 1-8.
DOI: 10.1155/2015/240948
Google Scholar
[32]
M.J. Sweet, A. Chessher, I. Singleton, Chapter five-review: metal-based nanoparticles; size, function, and areas for advancement in applied microbiology, Adv. Appl. Microbiol. 80 (2012) 113-142.
DOI: 10.1016/b978-0-12-394381-1.00005-2
Google Scholar
[33]
Y. Cherifi, A. Chaouchi, Y. Lorgoilloux, M. Rguiti, A. Kadri, C. Courtois, Electrical, dielectric and photocatalytic properties of Fe-doped ZnO nanomaterials synthesized by sol-gel method, Process Appl. Ceram. 10 (2016) 125-135.
DOI: 10.2298/pac1603125c
Google Scholar