[1]
Offical Journal of the European Union, Directive 2012/27/EU of the European Parliament and of the council of 25 October 2012 on energy efficiency, amending Directives 2009/125/EC and 2010/30/EU and repealing Directives 2004/8/EC and 2006/32/EC, (2012).
DOI: 10.5040/9781509923205.0024
Google Scholar
[2]
K. Bobzin, T. Brögelmann, C. Kalscheuer, Triboactive CrAlN+X hybrid dcMS/HPPMS PVD nitride hard coatings for friction and wear reduction on components, Surface and Coatings Technology 332 (2017) 452–463.
DOI: 10.1016/j.surfcoat.2017.06.089
Google Scholar
[3]
IBISWorld, Lubricant Oil Manufacturing in the US: Market Research Report, 6-17-(2013).
Google Scholar
[4]
K. Bobzin, T. Brögelmann, N.C. Kruppe, T. Bergs, D. Trauth, R. Hild, R. Mannens, D.C. Hoffmann, Self‐Lubricating Physical Vapor Deposition Coatings for Dry Cold Massive Forming, steel research int. 2 (2019) 1900475.
DOI: 10.1002/srin.201900475
Google Scholar
[5]
A.A. Voevodin, C. Muratore, S.M. Aouadi, Hard coatings with high temperature adaptive lubrication and contact thermal management: review, Surface and Coatings Technology 257 (2014) 247–265.
DOI: 10.1016/j.surfcoat.2014.04.046
Google Scholar
[6]
G.G. Ye, S.F. Xue, X.H. Tong, L.H. Dai, Influence of Cutting Conditions on the Cutting Performance of TiAl6V4, AMR 337 (2011) 387–391.
DOI: 10.4028/www.scientific.net/amr.337.387
Google Scholar
[7]
K. Bobzin, T. Brögelmann, N.C. Kruppe, D.C. Hoffmann, F. Klocke, P. Mattfeld, D. Trauth, R. Hild, Tribological studies on self-lubricating (Cr,Al)N+Mo:S coatings at elevated temperature, Surface and Coatings Technology 353 (2018) 282–291.
DOI: 10.1016/j.surfcoat.2018.06.067
Google Scholar
[8]
K. Bobzin, E. Lugscheider, R. Nickel, P. Immich, (Cr1-x,Alx)N a review about a multi-purpose coating system, Mat.-wiss. u. Werkstofftech. 37 (2006) 833–841.
DOI: 10.1002/mawe.200600048
Google Scholar
[9]
T. Weirather, C. Czettl, P. Polcik, M. Kathrein, C. Mitterer, Industrial-scale sputter deposition of Cr1−xAlxN coatings with 0.21≤x≤0.74 from segmented targets, Surface and Coatings Technology 232 (2013) 303–310.
DOI: 10.1016/j.surfcoat.2013.05.022
Google Scholar
[10]
X.-Z. Ding, X.T. Zeng, Structural, mechanical and tribological properties of CrAlN coatings deposited by reactive unbalanced magnetron sputtering, Surface and Coatings Technology 200 (2005) 1372–1376.
DOI: 10.1016/j.surfcoat.2005.08.072
Google Scholar
[11]
K. Bobzin, Oberflächentechnik für den Maschinenbau, Wiley-VCH, Weinheim, 2013, ISBN 978-3-527-33018-8.
Google Scholar
[12]
F. Klocke, Fertigungsverfahren 2, Springer Berlin Heidelberg, Berlin, Heidelberg, 2017, ISBN 978-3-662-53309-3.
Google Scholar
[13]
H. Czichos, K.-H. Habig, Tribologie-Handbuch, Springer Fachmedien Wiesbaden, Wiesbaden, 2015, ISBN 978-3-8348-1810-2.
Google Scholar
[14]
R.H. Brugnara, Hochtemperaturaktive HPPMS-Verschleißschutzschichten durch Bildung reibmindernder Magnéli-Phasen im System (Cr,Al,X)N. Dissertation, ISBN 978-3-8440-4161-3.
Google Scholar
[15]
T. W. Scharf, S. V. Prasad, Solid lubricants: a review, J Mater Sci 48 (2013) 511–531.
Google Scholar
[16]
C. Busch, Solid Lubrication, in: T. Mang, W. Dresel (Eds.), Lubricants and lubrication, Third, completely revised and enlarged edition, Wiley-VCH, Weinheim, Germany, 2017, p.843–879.
Google Scholar
[17]
T. Polcar, A. Cavaleiro, Review on self-lubricant transition metal dichalcogenide nanocomposite coatings alloyed with carbon, Surface and Coatings Technology 206 (2011) 686–695.
DOI: 10.1016/j.surfcoat.2011.03.004
Google Scholar
[18]
T. Mang, W. Dresel (Eds.), Lubricants and lubrication, Third, completely revised and enlarged edition, Wiley-VCH, Weinheim, Germany, 2017, ISBN 978-3-527-32670-9.
Google Scholar
[19]
T. Spalvins, A review of recent advances in solid film lubrication, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 5 (1987) 212–219.
DOI: 10.1116/1.574106
Google Scholar
[20]
V. Spassov, E. Meyer, P.C. Oelhafen, Alloying a hard phase with a solid lubricant, an approach concept for hard, self-lubricating PVD coatings for tribological applications, (:unav), (2006).
Google Scholar
[21]
H.E. Sliney, Solid lubricant materials for high temperatures-a review, Tribology International 15 (1982) 303–315.
DOI: 10.1016/0301-679x(82)90089-5
Google Scholar
[22]
T. Scharf, S. Prasad, M. Dugger, P. Kotula, R. Goeke, R. Grubbs, Growth, structure, and tribological behavior of atomic layer-deposited tungsten disulphide solid lubricant coatings with applications to MEMS, Acta Materialia 54 (2006) 4731–4743.
DOI: 10.1016/j.actamat.2006.06.009
Google Scholar
[23]
J.-F. Yang, B. Parakash, J. Hardell, Q.-F. Fang, Tribological properties of transition metal di-chalcogenide based lubricant coatings, Front. Mater. Sci. 6 (2012) 116–127.
DOI: 10.1007/s11706-012-0155-7
Google Scholar
[24]
D. Mandrino, B. Podgornik, XPS investigations of tribofilms formed on CrN coatings, Applied Surface Science 396 (2017) 554–559.
DOI: 10.1016/j.apsusc.2016.10.194
Google Scholar
[25]
P.E. Hovsepian, P. Mandal, A.P. Ehiasarian, G. Sáfrán, R. Tietema, D. Doerwald, Friction and wear behaviour of Mo–W doped carbon-based coating during boundary lubricated sliding, Applied Surface Science 366 (2016) 260–274.
DOI: 10.1016/j.apsusc.2016.01.007
Google Scholar
[26]
K. Bobzin, T. Brögelmann, N.C. Kruppe, S. Basturk, F. Klocke, P. Mattfeld, D. Trauth, R. Hild, Synthesis, characterization, and tribological evaluation of HPPMS (Cr1−xAlx)N + MoSy coatings, Surface and Coatings Technology 308 (2016) 383–393.
DOI: 10.1016/j.surfcoat.2016.07.089
Google Scholar
[27]
D.G. Teer, New solid lubricant coatings, Wear 251 (2001) 1068–1074.
DOI: 10.1016/s0043-1648(01)00764-5
Google Scholar
[28]
V.C. Fox, N. Renevier, D.G. Teer, J. Hampshire, V. Rigato, The structure of tribologically improved MoS2–metal composite coatings and their industrial applications, Surface and Coatings Technology 116-119 (1999) 492–497.
DOI: 10.1016/s0257-8972(99)00193-0
Google Scholar
[29]
A. Erdemir, A crystal chemical approach to the formulation of self-lubricating nanocomposite coatings, Surface and Coatings Technology 200 (2005) 1792–1796.
DOI: 10.1016/j.surfcoat.2005.08.054
Google Scholar
[30]
A. Magnéli, Structures of the ReO 3 -type with recurrent dislocations of atoms: `homologous series' of molybdenum and tungsten oxides, Acta Cryst 6 (1953) 495–500.
DOI: 10.1107/s0365110x53001381
Google Scholar
[31]
E. Lugscheider, O. Knotek, K. Bobzin, S. Bärwulf, Tribological properties, phase generation and high temperature phase stability of tungsten- and vanadium-oxides deposited by reactive MSIP-PVD process for innovative lubrication applications, Surface and Coatings Technology 133-134 (2000) 362–368.
DOI: 10.1016/s0257-8972(00)00963-4
Google Scholar
[32]
E. Lugscheider, O. Knotek, S. Bärwulf, K. Bobzin, Characteristic curves of voltage and current, phase generation and properties of tungsten- and vanadium-oxides deposited by reactive d.c.-MSIP-PVD-process for self-lubricating applications, Surface and Coatings Technology 142-144 (2001) 137–142.
DOI: 10.1016/s0257-8972(01)01318-4
Google Scholar
[33]
E. Lugscheider, S. Bärwulf, C. Barimani, Properties of tungsten and vanadium oxides deposited by MSIP–PVD process for self-lubricating applications, Surface and Coatings Technology 120-121 (1999) 458–464.
DOI: 10.1016/s0257-8972(99)00467-3
Google Scholar
[34]
R. Franz, C. Mitterer, Vanadium containing self-adaptive low-friction hard coatings for high-temperature applications: A review, Surface and Coatings Technology 228 (2013) 1–13.
DOI: 10.1016/j.surfcoat.2013.04.034
Google Scholar
[35]
K. Bobzin, N. Bagcivan, M. Ewering, R.H. Brugnara, S. Theiß, DC-MSIP/HPPMS (Cr,Al,V)N and (Cr,Al,W)N thin films for high-temperature friction reduction, Surface and Coatings Technology 205 (2011) 2887–2892.
DOI: 10.1016/j.surfcoat.2010.10.056
Google Scholar
[36]
R. Franz, J. Neidhardt, R. Kaindl, B. Sartory, R. Tessadri, M. Lechthaler, P. Polcik, C. Mitterer, Influence of phase transition on the tribological performance of arc-evaporated AlCrVN hard coatings, Surface and Coatings Technology 203 (2009) 1101–1105.
DOI: 10.1016/j.surfcoat.2008.10.003
Google Scholar
[37]
W. Tillmann, S. Momeni, F. Hoffmann, A study of mechanical and tribological properties of self-lubricating TiAlVN coatings at elevated temperatures, Tribology International 66 (2013) 324–329.
DOI: 10.1016/j.triboint.2013.06.007
Google Scholar
[38]
G. Gassner, P.H. Mayrhofer, K. Kutschej, C. Mitterer, M. Kathrein, A New Low Friction Concept for High Temperatures: Lubricious Oxide Formation on Sputtered VN Coatings, Tribology Letters 17 (2004) 751–756.
DOI: 10.1007/s11249-004-8083-z
Google Scholar