Self-Lubricating PVD Hard Coatings through Tribological Activation

Article Preview

Abstract:

PVD (physical vapor deposition) hard coatings are widely used and common in manufacturing technologies, for the use as wear and oxidation protection of tools and components. Therefore, many specialized hard coatings systems have been developed until now. Nevertheless, there is a demand to improve the functionality of PVD hard coatings, i.e. due to a self-lubricating effect through tribological activation. According to the current state of research, solid lubricants with lattice layer structure and oxidic solid lubricants are particularly suitable for this purpose. This work gives an overview on the functional mechanisms as well as required environmental conditions and activation mechanisms of transition metal dichalcogenides (TMD) and Magnéli-phases.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

109-116

Citation:

Online since:

October 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Offical Journal of the European Union, Directive 2012/27/EU of the European Parliament and of the council of 25 October 2012 on energy efficiency, amending Directives 2009/125/EC and 2010/30/EU and repealing Directives 2004/8/EC and 2006/32/EC, (2012).

DOI: 10.5040/9781509923205.0024

Google Scholar

[2] K. Bobzin, T. Brögelmann, C. Kalscheuer, Triboactive CrAlN+X hybrid dcMS/HPPMS PVD nitride hard coatings for friction and wear reduction on components, Surface and Coatings Technology 332 (2017) 452–463.

DOI: 10.1016/j.surfcoat.2017.06.089

Google Scholar

[3] IBISWorld, Lubricant Oil Manufacturing in the US: Market Research Report, 6-17-(2013).

Google Scholar

[4] K. Bobzin, T. Brögelmann, N.C. Kruppe, T. Bergs, D. Trauth, R. Hild, R. Mannens, D.C. Hoffmann, Self‐Lubricating Physical Vapor Deposition Coatings for Dry Cold Massive Forming, steel research int. 2 (2019) 1900475.

DOI: 10.1002/srin.201900475

Google Scholar

[5] A.A. Voevodin, C. Muratore, S.M. Aouadi, Hard coatings with high temperature adaptive lubrication and contact thermal management: review, Surface and Coatings Technology 257 (2014) 247–265.

DOI: 10.1016/j.surfcoat.2014.04.046

Google Scholar

[6] G.G. Ye, S.F. Xue, X.H. Tong, L.H. Dai, Influence of Cutting Conditions on the Cutting Performance of TiAl6V4, AMR 337 (2011) 387–391.

DOI: 10.4028/www.scientific.net/amr.337.387

Google Scholar

[7] K. Bobzin, T. Brögelmann, N.C. Kruppe, D.C. Hoffmann, F. Klocke, P. Mattfeld, D. Trauth, R. Hild, Tribological studies on self-lubricating (Cr,Al)N+Mo:S coatings at elevated temperature, Surface and Coatings Technology 353 (2018) 282–291.

DOI: 10.1016/j.surfcoat.2018.06.067

Google Scholar

[8] K. Bobzin, E. Lugscheider, R. Nickel, P. Immich, (Cr1-x,Alx)N a review about a multi-purpose coating system, Mat.-wiss. u. Werkstofftech. 37 (2006) 833–841.

DOI: 10.1002/mawe.200600048

Google Scholar

[9] T. Weirather, C. Czettl, P. Polcik, M. Kathrein, C. Mitterer, Industrial-scale sputter deposition of Cr1−xAlxN coatings with 0.21≤x≤0.74 from segmented targets, Surface and Coatings Technology 232 (2013) 303–310.

DOI: 10.1016/j.surfcoat.2013.05.022

Google Scholar

[10] X.-Z. Ding, X.T. Zeng, Structural, mechanical and tribological properties of CrAlN coatings deposited by reactive unbalanced magnetron sputtering, Surface and Coatings Technology 200 (2005) 1372–1376.

DOI: 10.1016/j.surfcoat.2005.08.072

Google Scholar

[11] K. Bobzin, Oberflächentechnik für den Maschinenbau, Wiley-VCH, Weinheim, 2013, ISBN 978-3-527-33018-8.

Google Scholar

[12] F. Klocke, Fertigungsverfahren 2, Springer Berlin Heidelberg, Berlin, Heidelberg, 2017, ISBN 978-3-662-53309-3.

Google Scholar

[13] H. Czichos, K.-H. Habig, Tribologie-Handbuch, Springer Fachmedien Wiesbaden, Wiesbaden, 2015, ISBN 978-3-8348-1810-2.

Google Scholar

[14] R.H. Brugnara, Hochtemperaturaktive HPPMS-Verschleißschutzschichten durch Bildung reibmindernder Magnéli-Phasen im System (Cr,Al,X)N. Dissertation, ISBN 978-3-8440-4161-3.

Google Scholar

[15] T. W. Scharf, S. V. Prasad, Solid lubricants: a review, J Mater Sci 48 (2013) 511–531.

Google Scholar

[16] C. Busch, Solid Lubrication, in: T. Mang, W. Dresel (Eds.), Lubricants and lubrication, Third, completely revised and enlarged edition, Wiley-VCH, Weinheim, Germany, 2017, p.843–879.

Google Scholar

[17] T. Polcar, A. Cavaleiro, Review on self-lubricant transition metal dichalcogenide nanocomposite coatings alloyed with carbon, Surface and Coatings Technology 206 (2011) 686–695.

DOI: 10.1016/j.surfcoat.2011.03.004

Google Scholar

[18] T. Mang, W. Dresel (Eds.), Lubricants and lubrication, Third, completely revised and enlarged edition, Wiley-VCH, Weinheim, Germany, 2017, ISBN 978-3-527-32670-9.

Google Scholar

[19] T. Spalvins, A review of recent advances in solid film lubrication, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 5 (1987) 212–219.

DOI: 10.1116/1.574106

Google Scholar

[20] V. Spassov, E. Meyer, P.C. Oelhafen, Alloying a hard phase with a solid lubricant, an approach concept for hard, self-lubricating PVD coatings for tribological applications, (:unav), (2006).

Google Scholar

[21] H.E. Sliney, Solid lubricant materials for high temperatures-a review, Tribology International 15 (1982) 303–315.

DOI: 10.1016/0301-679x(82)90089-5

Google Scholar

[22] T. Scharf, S. Prasad, M. Dugger, P. Kotula, R. Goeke, R. Grubbs, Growth, structure, and tribological behavior of atomic layer-deposited tungsten disulphide solid lubricant coatings with applications to MEMS, Acta Materialia 54 (2006) 4731–4743.

DOI: 10.1016/j.actamat.2006.06.009

Google Scholar

[23] J.-F. Yang, B. Parakash, J. Hardell, Q.-F. Fang, Tribological properties of transition metal di-chalcogenide based lubricant coatings, Front. Mater. Sci. 6 (2012) 116–127.

DOI: 10.1007/s11706-012-0155-7

Google Scholar

[24] D. Mandrino, B. Podgornik, XPS investigations of tribofilms formed on CrN coatings, Applied Surface Science 396 (2017) 554–559.

DOI: 10.1016/j.apsusc.2016.10.194

Google Scholar

[25] P.E. Hovsepian, P. Mandal, A.P. Ehiasarian, G. Sáfrán, R. Tietema, D. Doerwald, Friction and wear behaviour of Mo–W doped carbon-based coating during boundary lubricated sliding, Applied Surface Science 366 (2016) 260–274.

DOI: 10.1016/j.apsusc.2016.01.007

Google Scholar

[26] K. Bobzin, T. Brögelmann, N.C. Kruppe, S. Basturk, F. Klocke, P. Mattfeld, D. Trauth, R. Hild, Synthesis, characterization, and tribological evaluation of HPPMS (Cr1−xAlx)N + MoSy coatings, Surface and Coatings Technology 308 (2016) 383–393.

DOI: 10.1016/j.surfcoat.2016.07.089

Google Scholar

[27] D.G. Teer, New solid lubricant coatings, Wear 251 (2001) 1068–1074.

DOI: 10.1016/s0043-1648(01)00764-5

Google Scholar

[28] V.C. Fox, N. Renevier, D.G. Teer, J. Hampshire, V. Rigato, The structure of tribologically improved MoS2–metal composite coatings and their industrial applications, Surface and Coatings Technology 116-119 (1999) 492–497.

DOI: 10.1016/s0257-8972(99)00193-0

Google Scholar

[29] A. Erdemir, A crystal chemical approach to the formulation of self-lubricating nanocomposite coatings, Surface and Coatings Technology 200 (2005) 1792–1796.

DOI: 10.1016/j.surfcoat.2005.08.054

Google Scholar

[30] A. Magnéli, Structures of the ReO 3 -type with recurrent dislocations of atoms: `homologous series' of molybdenum and tungsten oxides, Acta Cryst 6 (1953) 495–500.

DOI: 10.1107/s0365110x53001381

Google Scholar

[31] E. Lugscheider, O. Knotek, K. Bobzin, S. Bärwulf, Tribological properties, phase generation and high temperature phase stability of tungsten- and vanadium-oxides deposited by reactive MSIP-PVD process for innovative lubrication applications, Surface and Coatings Technology 133-134 (2000) 362–368.

DOI: 10.1016/s0257-8972(00)00963-4

Google Scholar

[32] E. Lugscheider, O. Knotek, S. Bärwulf, K. Bobzin, Characteristic curves of voltage and current, phase generation and properties of tungsten- and vanadium-oxides deposited by reactive d.c.-MSIP-PVD-process for self-lubricating applications, Surface and Coatings Technology 142-144 (2001) 137–142.

DOI: 10.1016/s0257-8972(01)01318-4

Google Scholar

[33] E. Lugscheider, S. Bärwulf, C. Barimani, Properties of tungsten and vanadium oxides deposited by MSIP–PVD process for self-lubricating applications, Surface and Coatings Technology 120-121 (1999) 458–464.

DOI: 10.1016/s0257-8972(99)00467-3

Google Scholar

[34] R. Franz, C. Mitterer, Vanadium containing self-adaptive low-friction hard coatings for high-temperature applications: A review, Surface and Coatings Technology 228 (2013) 1–13.

DOI: 10.1016/j.surfcoat.2013.04.034

Google Scholar

[35] K. Bobzin, N. Bagcivan, M. Ewering, R.H. Brugnara, S. Theiß, DC-MSIP/HPPMS (Cr,Al,V)N and (Cr,Al,W)N thin films for high-temperature friction reduction, Surface and Coatings Technology 205 (2011) 2887–2892.

DOI: 10.1016/j.surfcoat.2010.10.056

Google Scholar

[36] R. Franz, J. Neidhardt, R. Kaindl, B. Sartory, R. Tessadri, M. Lechthaler, P. Polcik, C. Mitterer, Influence of phase transition on the tribological performance of arc-evaporated AlCrVN hard coatings, Surface and Coatings Technology 203 (2009) 1101–1105.

DOI: 10.1016/j.surfcoat.2008.10.003

Google Scholar

[37] W. Tillmann, S. Momeni, F. Hoffmann, A study of mechanical and tribological properties of self-lubricating TiAlVN coatings at elevated temperatures, Tribology International 66 (2013) 324–329.

DOI: 10.1016/j.triboint.2013.06.007

Google Scholar

[38] G. Gassner, P.H. Mayrhofer, K. Kutschej, C. Mitterer, M. Kathrein, A New Low Friction Concept for High Temperatures: Lubricious Oxide Formation on Sputtered VN Coatings, Tribology Letters 17 (2004) 751–756.

DOI: 10.1007/s11249-004-8083-z

Google Scholar