[1]
Batchelor, G.K. Note on a class of solutions of the Navier-Stokes equations representing steady rotationally-symmetric flow. Quart. J. Mech. Appl. Math., 4(1) (1951), 29–41.
DOI: 10.1093/qjmam/4.1.29
Google Scholar
[2]
Zandbergen, P.J., Dijkstra D. Von Kármán swirling flows. Annu. Rev. Fluid Mech., 19 (2004), 465–491.
DOI: 10.1146/annurev.fl.19.010187.002341
Google Scholar
[3]
F.C. Li, T. Kunugi, A. Serizawa, MHD Effect on flow structures and heat transfer characteristics of liquid metal - gas annular flow in a vertical pipe, Intl. J. Heat Mass Transf. 48 (2005), 2571–2581.
DOI: 10.1016/j.ijheatmasstransfer.2004.12.041
Google Scholar
[4]
M. Sankar, M. Venkatachalappa, I.S. Shivakumara, Effect of magnetic field on natural convection in a vertical cylindrical annulus, Internat. J. Engrg. Sci. 44 (2006) 1556–1570.
DOI: 10.1016/j.ijengsci.2006.06.004
Google Scholar
[5]
M. Venkatachalappa, Y. Do, M. Sankar, Effect of magnetic field on the heat and mass transfer in a vertical annulus, Internat. J. Engrg. Sci. 49 (2011) 262–278.
DOI: 10.1016/j.ijengsci.2010.12.002
Google Scholar
[6]
S.C. Kakarantzas, L.Th. Benos, I.E. Sarris, B. Knaepen, A.P. Grecos, N.S. Vlachos, MHD liquid metal flow and heat transfer between vertical coaxial cylinders under horizontal magnetic field, Int. J. Heat Fluid Flow 65 (2017) 342–351.
DOI: 10.1016/j.ijheatfluidflow.2017.01.001
Google Scholar
[7]
A. Bendjaghlouli, B. Mahfoud, D.E. Ameziani. Magnetohydrodynamique flow in a truncated conical enclosure, Journal of Thermal Engineering, Vol. 5, No. 2, Special Issue 9 (2019), pp.77-83, Istanbul, Turkey.
DOI: 10.18186/thermal.532133
Google Scholar
[8]
E. Van De Sande, B.J.G. Hamer, Steady and transient natural convection in enclosures between horizontal circular cylinders (constant heat flux), Int. J. Heat Mass Transfer 22 (1979) 361–370.
DOI: 10.1016/0017-9310(79)90002-4
Google Scholar
[9]
Y.T. Tsui, B. Tremblay, On transient natural convection heat transfer in the annulus between concentric, horizontal cylinders with isothermal surfaces, Int. J. Heat Mass Transfer 27 (1984) 103–111.
DOI: 10.1016/0017-9310(84)90242-4
Google Scholar
[10]
M.Y. Ha, M.J. Jung, Y.S. Kim, Numerical study on transient heat transfer and fluid flow of natural convection in an enclosure with a heat-generating conducting body, Numer. Heat Transfer, Part A: Appl. 35 (1999) 415–433.
DOI: 10.1080/104077899275209
Google Scholar
[11]
M.Y. Ha, I.-K. Kim, H.S. Yoon, K.S. Yoon, J.R. Lee, S. Balachandar, H.H. Chun, Two-dimensional and unsteady natural convection in a horizontal enclosure with a square body, Numer. Heat Transfer, Part A: Appl. 41 (2002) 183–210.
DOI: 10.1080/104077802317221393
Google Scholar
[12]
H.-S. Chu, T.-S. Lee, Transient natural convection heat transfer between concentric spheres, Int. J. Heat Mass Transfer 36 (1993) 3159–3170.
DOI: 10.1016/0017-9310(93)90001-m
Google Scholar
[13]
H.W. Wu, W.C. Tsai, H.-M. Chou, Transient natural convection heat transfer of fluids with variable viscosity between concentric and vertically eccentric spheres, Int. J. Heat Mass Transfer 47 (2004) 1685–1700.
DOI: 10.1016/j.ijheatmasstransfer.2003.10.018
Google Scholar
[14]
X. Xu, G. Sun, Z. Yu, Y. Hu, L. Fan, K. Cen, Numerical investigation of laminar natural convective heat transfer from a horizontal triangular cylinder to its concentric cylindrical enclosure, Int. J. Heat Mass Transfer 52 (2009) 3176–3186.
DOI: 10.1016/j.ijheatmasstransfer.2009.01.026
Google Scholar
[15]
G. de Vahl Davis, R.W. Thomas, Natural convection between concentric vertical cylinders, Physics of Fluids 12 (12) (1969) (II–198–II–207).
DOI: 10.1063/1.1692437
Google Scholar
[16]
A. Hadjadj, S. Maamir, B. Zeghmati, A new study of laminar natural convection in two concentric vertical cylinders, Heat and Mass Transfer 35 (2) (1999) 113–121.
DOI: 10.1007/s002310050304
Google Scholar
[17]
A. Hadjadj, M.E. Kyal, Effect of two sinusoidal protuberances on natural convection in a vertical concentric annulus, Numerical Heat Transfer Part A 36 (3) (1999) 273–289.
DOI: 10.1080/104077899274769
Google Scholar
[18]
M. Charmchi, E.M. Sparrow, Analysis of natural convection in the space between concentric vertical cylinders of different height and diameter, Numerical Heat Transfer Part A 5 (2) (1982) 119–144.
DOI: 10.1080/10407788208913439
Google Scholar
[19]
E.M. Sparrow, M. Charmchi, Natural convection experiments in an enclosure between eccentric or concentric vertical cylinders of different height and diameter, International Journal of Heat and Mass Transfer 26 (1) (1983) 133–143.
DOI: 10.1016/s0017-9310(83)80015-5
Google Scholar
[20]
E. Fattahi, M. Farhadi, K. Sedighi, Lattice Boltzmann simulation of natural convection heat transfer in eccentric annulus, International Journal of Thermal Sciences 49 (12) (2010) 2353–2362.
DOI: 10.1016/j.ijthermalsci.2010.07.014
Google Scholar
[21]
J.F. Lafortune, D.A. Meneley, Natural convection in a vertical cylinder: comparison of commix-1a predictions with experiment, International Journal of Heat and Mass Transfer 33 (3) (1990) 435–445.
DOI: 10.1016/0017-9310(90)90179-x
Google Scholar
[22]
S.C. Dash, N. Singh, Study of axisymmetric nature in 3-D swirling flow in a cylindrical annulus with a top rotating lid under the influence of axial temperature gradient or axial magnetic field, Journal of Thermal Engineering, Vol. 3, No. 6, Special Issue 6, pp (2017). 1588-1606, Istanbul, Turkey.
DOI: 10.18186/journal-of-thermal-engineering.353737
Google Scholar
[23]
B. Mahfoud, A. Laouari, A. Hadjadj, H. Benhacine, Counter-rotating flow in coaxial cylinders under an axial magnetic field, European Journal of Mechanics / B Fluids 78 (2019) 139–146.
DOI: 10.1016/j.euromechflu.2019.06.009
Google Scholar
[24]
B. Mahfoud, R. Bessaïh, Magnetohydrodynamic counter-rotating flow in a cylindrical cavity, Int. J. Heat Mass Transfer 93 (2016) 175–185.
DOI: 10.1016/j.ijheatmasstransfer.2015.10.009
Google Scholar
[25]
R. Bessaïh, A. Boukhari, Ph. Marty, Magnetohydrodynamics stability of a rotating flow with heat transfer, Int. Commun. Heat Mass Transfer 36 (2009) 893–901.
DOI: 10.1016/j.icheatmasstransfer.2009.06.009
Google Scholar
[26]
S.V. Patankar, Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New-York, (1980).
Google Scholar
[27]
Michelson, J.A, Modeling of laminar incompressible rotating fluid flows,, AFM 86-05, Ph. D. Dissertation. Dept. of Fluid Mechanics, Tech. Univ. of Denmark (1986).
Google Scholar