[1]
Islama, M. Sharif, E. Carlsona. Numerical investigation of double diffusive natural convection of CO2 in a brine saturated geothermal reservoir. Geothermics. 48(2013) 101-111.
DOI: 10.1016/j.geothermics.2013.07.001
Google Scholar
[2]
T. Nagel, H. Shao, A. Singh, N. Watanabe, C. Roßkopf, M. Linder. Non equilibrium thermo-chemical heat storage in porous media: part 1-conceptual model. Energy 60 (2013) 254-270.
DOI: 10.1016/j.energy.2013.06.025
Google Scholar
[3]
H. Shao, T. Nagel, C. Roßkopf, M. Linder, A. W€orner, O. Kolditz. Non-equilibrium thermo-chemical heat storage in porous media: part 2-A 1D computational model for a calcium hydroxide reaction system. Energy 60 (2013)271-282.
DOI: 10.1016/j.energy.2013.07.063
Google Scholar
[4]
Y. Liu, H. Wang, Z. Shen, Y. Song. Estimation of CO2 storage capacity in porous media by using X-ray micro-CT. Energy Procedia 37(2013) 5201-5208.
DOI: 10.1016/j.egypro.2013.06.436
Google Scholar
[5]
A.Nouri-Borujerdi, SI. Tabatabai. Porous media approach in thermo-hydraulic analysis of high temperature reactors in pressurized/depressurized cool down: an improvement. ProgNucl Energy 80(2015) 119-127.
DOI: 10.1016/j.pnucene.2014.11.017
Google Scholar
[6]
C.Beghein, F. Haghighat, F. Allard, Numerical study of double-diffusive natural convection in a square cavity, Int J Heat Mass Transf. 35(1992) 833-846.
DOI: 10.1016/0017-9310(92)90251-m
Google Scholar
[7]
R.W. Schmitt, Double diffusion in oceanography, Fluid Mech. 26(1994) 255–285.
Google Scholar
[8]
J.S. Turner, Double diffusive phenomena, Fluid Mech. 6 (1974) 37–56.
Google Scholar
[9]
S. Ostrach, Natural convection with combined driving forces, Physicochem. Hydrodyn. 1(1980) 233–247.
Google Scholar
[10]
Nield, and A. Bejan, Convection in Porous Media, 3rd ed. Spinger, New York Inc,(2006).
Google Scholar
[11]
B. Ingham, and I. pop, Transport phenomena in porous media, 3rd ed. Elsevier, Oxford, (2005).
Google Scholar
[12]
P. Vadász, emerging topics in heat and mass transfer in porous media. Spinger, New York Inc. (2008).
Google Scholar
[13]
R. Viskanta, T.L. Bergman, F.P. Incropera, Double diffusive natural convection, in: S. Kakac,W. Aung, R. Viskanta (Eds.), Natural Convection: Fundamentals and Applications, Hemisphere, Washington, DC, (1985).
Google Scholar
[14]
H. Fernando, Buoyancy transfer across a diffusive interface, J. Fluid Mech. 209(1989) l–34.
DOI: 10.1017/s0022112089003010
Google Scholar
[15]
T. Makayssi, M. Lamsaadi, M. Naimi, M. Hasnaoui, A. Raji, A. Bahlaoui, Natural double-diffusive convection in a shallow horizontal rectangular cavity uniformly heated and salted from the side and filled with non-Newtonian power-law fluids: the cooperating case, Energy Convers. Manage. 49 (2008) 2016–(2025).
DOI: 10.1016/j.enconman.2008.02.008
Google Scholar
[16]
M.A. Teamah, Numerical simulation of double diffusive natural convection in rectangular enclosure in the presences of magnetic field and heat source, Int. J. Therm. Sci. 47 (2008) 237–248.
DOI: 10.1016/j.ijthermalsci.2007.02.003
Google Scholar
[17]
H.S. Harzallah, A. Jbara, K. Slimi, Double-diffusive natural convection in anisotropic porous medium bounded by finite thickness walls: validity of local thermal equilibrium assumption, Transp. Porous Med. 103 (2014) 207–231.
DOI: 10.1007/s11242-014-0298-3
Google Scholar
[18]
Z. Alloui, P. Vasseur, Convection of a binary fluid in a shallow porous cavity heated and salted from the sides, Computers & Fluids 81 (2013) 85–94.
DOI: 10.1016/j.compfluid.2013.04.011
Google Scholar
[19]
R. Nikbakhti, J. Khodakhah, Numerical investigation of double diffusive buoyancy forces induced natural convection in a cavity partially heated and cooled from sidewalls, Engineering Science and Technology, an International Journal(2015).
DOI: 10.1016/j.jestch.2015.08.003
Google Scholar
[20]
M.A. Teamah, M.M. Khairat Dawood, W.M. El-Maghlany, Double diffusive natural convection in a square cavity with segmental heat sources, Eur. J. Sci. Res. 54 (2) (2011) 287–301.
Google Scholar
[21]
K. Al-Farhany, A. Turan, Numerical study of double diffusive natural convective heat and mass transfer in an inclined rectangular cavity filled with porous, International Communications in Heat and Mass Transfer 39 (2012) 174–181.
DOI: 10.1016/j.icheatmasstransfer.2011.11.014
Google Scholar
[22]
V.J. Bansod, R.K. Jadhav, An integral treatment for combined heat and mass transfer by natural convection along a horizontal surface in a porous medium, International Journal of Heat and Mass Transfer 52 (2009) 2802–2806.
DOI: 10.1016/j.ijheatmasstransfer.2008.12.015
Google Scholar
[23]
Zhao, D. Liu, G. Tang, Natural convection in an enclosure with localized heating and salting from below, International Journal of Heat and Mass Transfer 51 (2008) 2889–2904.
DOI: 10.1016/j.ijheatmasstransfer.2007.09.032
Google Scholar
[24]
A.Latreche, M. Djezzar, Convective heat and solute transfer in Newtonian fluid saturated inclined porous cavity, International Journal of Physical Research 2(2) (2014) 78-84.
DOI: 10.14419/ijpr.v2i2.3372
Google Scholar
[25]
A.Mohamad, R. Bennacer, Natural convection in a confined saturated porous medium with horizontal temperature and vertical solutal gradients, Int. J. Therm. Sci.40 (2001) 82–93.
DOI: 10.1016/s1290-0729(00)01182-0
Google Scholar
[26]
M. Bourich, A. Amahmid, M. Hasnaoui, Double diffusive convection in a porous enclosure submitted to cross gradients of temperature and concentration, Energy Conversion and Management 45 (2004) 1655–1670.
DOI: 10.1016/j.enconman.2003.10.003
Google Scholar
[27]
S. Roy, T. Basak, Finite element analysis of natural convection flows in a square cavity with non-uniformly heated wall(s), Int. J. Eng. Sci. 43 (2005) 668–680.
DOI: 10.1016/j.ijengsci.2005.01.002
Google Scholar
[28]
N.Hadidi, Y. Ould-Amer, R. Bennacer, Bi-layered and inclined porous collector: optimum heat and mass transfer. Energy 51 (2013) 422-430.
DOI: 10.1016/j.energy.2013.01.012
Google Scholar
[29]
N.Hadidi, R. Bennacer, Y. Ould-Amer, Two-dimensional thermosolutal natural convective heat and mass transfer in a bi-layered and inclined porous enclosure. Energy 93 (2015) 2582-2592.
DOI: 10.1016/j.energy.2015.10.121
Google Scholar
[30]
AC. Baytas , AF. Baytas, DB. Ingham, I. Pop. Double diffusive natural convection in an enclosure filled with a step type porous layer: non-darcy flow. Int J Therm Sci. 48 (2009) 665-673.
DOI: 10.1016/j.ijthermalsci.2008.06.001
Google Scholar
[31]
R. Bennacer, H. Beji, A.A. Mohamad, Double diffusive convection in a vertical enclosure insertedwith two saturated porous layers confining a fluid layer, International Journal of Thermal Sciences 42 (2003) 141–151.
DOI: 10.1016/s1290-0729(02)00014-5
Google Scholar
[32]
S. Patankar, Numerical Heat Transfer and Fluid flow, Hemisphere, New York, (1980).
Google Scholar
[33]
S.L. Moya, E. Ramos,M. Sen, Numerical study of natural convection in a tilted rectangular porousmaterial.International Journal of Heat andMass Transfer 30 (4) (1987) 741-756.
DOI: 10.1016/0017-9310(87)90204-3
Google Scholar
[34]
J.P. Caltagirone, S. Bories, Solutions and stability criteria of natural convective flow in an inclined porous layer.Journal of Fluid Mechanics 155 (1985) 267-287.
DOI: 10.1017/s002211208500180x
Google Scholar
[35]
A. Latreche, M. Djezzar, Numerical study of natural convective heat and mass transfer in an inclined porous media, Engineering, Technology & Applied Science Research 8(4) (2018) 3223-3227.
DOI: 10.48084/etasr.2179
Google Scholar
[36]
S. Safi, S. Benissaad, Double-diffusive convection in an anisotropic porous layer using the Darcy–Brinkman–Forchheimer formulation, Archives of Mechanics, 70(1) (2018) 89-102.
Google Scholar
[37]
N. Hadidi, R. Bennacer, Heat and mass transfer by natural convection in a bi-layered cubic enclosure with opposing temperature and concentration gradients, International Journal of Thermal Sciences, 132 (2018) 534-551.
DOI: 10.1016/j.ijthermalsci.2018.06.013
Google Scholar