Numerical Study in Three Dimensions of Influence of the Fluids Nature and Obstacle Position on the Electronic Component Cooling

Article Preview

Abstract:

In this work, we have studied numerically the influence of the nature of nanofluids and the obstacle position, within the mini-channel of dimensions (10 x 10 x 108 mm3) on the electronic component cooling. The power of the electronic component is constant. In these simulations we have considered the Al2O3-water, SiO2-water and TiO2-water as coolants. The numerical results are obtained by choosing a Reynolds number (Re) between 300 and 500 and considering that the flow regime is stationary. The simulation was performed using the software, ANSYS FLUENT.The analysis of the simulation results shows that the position of obstacles within the mini-channel has considerable effects on the improvement of the electronic component temperature. The results also showed that among the nanofluids studied, the liquid containing nanoparticles Al2O3-water is the best for the electronic component cooling.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

110-121

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. Mjallal , H. Farhat, M. Hammoud , S. Ali  and I. Assi, Improving the cooling efficiency of heat sinks through the use of different types of phase change materials, Technologies. 6 (1) (2018) 5 https://doi.org/10.3390/technologies6010005.

DOI: 10.3390/technologies6010005

Google Scholar

[2] S.S. Khaleduzzaman, R.Saidur, Jeyraj Selvaraj, I.M. Mahbubul, M.R. Sohel, I.M. Shahrul, Nanofluids for thermal performance improvement in cooling of electronic device, Advanced Materials Research. 832 (2014) 218-223. https://doi.org/10.4028/www.scientific.net/AMR.832.218.

DOI: 10.4028/www.scientific.net/amr.832.218

Google Scholar

[3] A. Hamouche, Refroidissement à air des composants électroniques par convection Mixte, Thèse magister, Université Mentouri de Constantine, (2007).

Google Scholar

[4] H.W Wu, S.W Perng, Effect of an oblique plate on the heat transfer enhancement of mixed convection over heated blocks in horizontal channel, International Journal of Heat Transfer. 42 (1999) 1217-1235. https://doi.org/10.1016/S0017-9310(98)00247-6.

DOI: 10.1016/s0017-9310(98)00247-6

Google Scholar

[5] B. Premachandran and C. Balaji, Conjugate mixed convection with surface Radiation from a horizontal channel with protruding heat sources, International Journal of Heat and Mass Transfer. 49 (2006) 3568-3582. https://doi.org/10.1016/j.ijheatmasstransfer.2006.02.044.

DOI: 10.1016/j.ijheatmasstransfer.2006.02.044

Google Scholar

[6] T. J. Young, K. Vafai, Convective flow and heat transfer in a channel containing multiple heated obstacles, International Journal of Heat and Mass Transfer. 41 (1998) 3279-3298. https://doi.org/10.1016/S0017-9310(98)00014-3.

DOI: 10.1016/s0017-9310(98)00014-3

Google Scholar

[7] M. Kmiotek and A. Kucaba-piętal, Influence of slim obstacle geometry on the flow and heat transfer in microchannels, Bulletin of the Polish Academy of Sciences Technical Sciences. 66, No. 2 (2018). https://doi.org/10.24425/119064.

Google Scholar

[8] H. Togun, Laminar CuO-water nano-fluid flow and heat transfer in a backward-facing step with and without obstacle, Applied Nanoscience. 6  (2016) 371-378. https://doi.org/10.1007/s13204-015-0441-7.

DOI: 10.1007/s13204-015-0441-7

Google Scholar

[9] F. Mebarek-Oudina, R. Bessaïh, Numerical simulation of natural convection heat transfer of copper-Water nanofluid in a vertical cylindrical annulus with heat sources, Thermophysics and Aeromechanics. 26 (3) (2019) 325-334. https://doi.org/10.1134/S0869864319030028.

DOI: 10.1134/s0869864319030028

Google Scholar

[10] F. Mebarek-Oudina, Convective heat transfer of Titania nanofluids of different base fluids in cylindrical annulus with discrete heat source, Heat Transfer-Asian Research. 48(1) (2019) 135-147. https://doi.org/10.1002/htj.21375.

DOI: 10.1002/htj.21375

Google Scholar

[11] B. Mahanthesh, G. Lorenzini, F. Mebarek-Oudina and I. L. Animasaun, Significance of exponential space- and thermal-dependent heat source effects on nanofluid flow due to radially elongated disk with Coriolis and Lorentz forces, Journal of Thermal Analysis and Calorimetry (2019). https://doi.org/10.1007/s10973-019-08985-0.

DOI: 10.1007/s10973-019-08985-0

Google Scholar

[12] R. Mohebbi, M. Izadi, H. Sajjadi, A. A. Delouei, M.A. Sheremet, Examining of nanofluid natural convection heat transfer in a Γ-shaped enclosure including a rectangular hot obstacle using the lattice Boltzmann method, Physica A: Statistical Mechanics and its Applications. 526 (2019) 120831. https://doi.org/10.1016/j.physa.2019.04.067.

DOI: 10.1016/j.physa.2019.04.067

Google Scholar

[13] H. Laouira, F. Mebarek Oudina, A. K. Hussein, L. Kolsi, A. Merah, O. Younis, Heat transfer inside a horizontal channel with an open trapezoidal enclosure subjected to a heat source of different lengths, Heat Transfer-Asian Research. 49 (1) (2020) 406-423. https://doi.org/10.1002/htj.21618.

DOI: 10.1002/htj.21618

Google Scholar

[14] F. Mebarek-Oudina, S. Marzougui, A. Abderrahmane, M. Magherbi, Z. Shah, K. Ramesh, Entropy generation on Magneto-Convective flow of Copper-Water nanofluid in a cavity with chamfers, Journal of Thermal Analysis and Calorimetry (2020). https://doi.org/10.1007/s10973-020-09662-3.

DOI: 10.1007/s10973-020-09662-3

Google Scholar

[15] G. Huminic, A. Huminic, Entropy generation of nanofluid and hybrid nanofluid flow in thermal systems: A review, Journal of Molecular Liquids. 302 (2020) 112533. https://doi.org/10.1016/j.molliq.2020.112533.

DOI: 10.1016/j.molliq.2020.112533

Google Scholar

[16] J. Alsarraf, A. Shahsavar, M. Khaki, R. Ranjbarzadeh , A. Karimipour, M. Afrand, Numerical investigation on the effect of four constant temperature pipes on natural cooling of electronic heat sink by nanofluids: A multifunctional optimization, Advanced Powder Technology. 31 (2020) 416-432. https://doi.org/10.1016/j.apt.2019.10.035.

DOI: 10.1016/j.apt.2019.10.035

Google Scholar

[17] F. Selimefendigil, H. F. Öztop, Control of natural convection in a CNT-water nanofluid filled 3D cavity by using an inner T-shaped obstacle and thermoelectric cooler, International Journal of Mechanical Sciences. 169 (2020) 105104. https://doi.org/10.1016/j.ijmecsci.2019.105104.

DOI: 10.1016/j.ijmecsci.2019.105104

Google Scholar

[18] M. A. Hssain, R. Mir and Y. El Hammami, Numerical Simulation of the cooling of heated electronic blocks in horizontal channel by mixed convection of nanofluids, Journal of Nanomaterials. 2020 (2020) 11 pages. https://doi.org/10.1155/2020/4187074.

DOI: 10.1155/2020/4187074

Google Scholar

[19] T.E. Amin, G. Roghayeh, R. Fatemeh and P. Fatollah, Evaluation of nanoparticle shape effect on a nanofluid based flat-plate solar collector efficiency, Energy Exploration & Exploitation. (33) (5) (2015) 659-676. https://doi.org/10.1260/0144-5987.33.5.659.

DOI: 10.1260/0144-5987.33.5.659

Google Scholar

[20] M. Corcione, Heat transfer features of buoyancy-driven nanofluids inside rectangular enclosures differentially heated at the sidewalls, International Journal of Thermal Science. 49 (2010) 1536-1546. https://doi.org/10.1016/j.ijthermalsci.2010.05.005.

DOI: 10.1016/j.ijthermalsci.2010.05.005

Google Scholar

[21] H.E Patel, T. Sundarrajan, T. Pradeep, A. Dasgupta, N. Dasgupta and S.K. Das, A micro-convection model for thermal conductivity of nanofluid, Pramana Journal Physique. 65 (2005) 863-869, https://doi.org/10.1007/BF02704086.

DOI: 10.1007/bf02704086

Google Scholar

[22] N. M. Muhammad and N. A. C. Sidik, Numerical analysis on thermal and hydraulic performance of diverging-converging minichannel heat sink using Al2O3-H2O nanofluid, IOP Conf. Series: Materials Science and Engineering. 469 (2019). https://doi.org/10.1088/1757-899X/469/1/012046.

DOI: 10.1088/1757-899x/469/1/012046

Google Scholar

[23] K. M. Mostafa, R. Ardehali and A. Ijam, CFD investigation of nanofluid effects (cooling performance and pressure drop) in mini-channel heat sink, International Communications in Heat and Mass Transfer. 40 (2013) 58-66. https://doi.org/10.1016/j.icheatmasstransfer.2012.10.021.

DOI: 10.1016/j.icheatmasstransfer.2012.10.021

Google Scholar

[24] F. Selimefendigil, H. F. Öztop, N. Abu-Hamdeh, Mixed convection due to rotating cylinder in an internally heated and flexible walled cavity filled with SiO2–water nanofluids: Effect of nanoparticle shape, International Communications in Heat and Mass Transfer. 71 (2016) 9-19. https://doi.org/10.1016/j.icheatmasstransfer.2015.12.007.

DOI: 10.1016/j.icheatmasstransfer.2015.12.007

Google Scholar

[25] K. A. Jehhef, R. H. Khanjar and M. A. Siba, Convection heat transfer enhancement in square cross-section with obstacle using nanofluids, IOP Conf. Series: Materials Science and Engineering. 518 (2019). https://doi.org/10.1088/1757-899X/518/3/032004.

DOI: 10.1088/1757-899x/518/3/032004

Google Scholar

[26] G. Ali Sheikhzadeh, A. Aghaei, S. soleimani, Effect of nanoparticle shape on natural convection heat transfer in a square cavity with partitions using water-SiO2 nanofluid, Trans. Phenom. Nano Micro Scales. 6(1) (2018) 27-38. https://dx.doi.org/10.22111/tpnms.2018.3520.

Google Scholar

[27] S. Tippa, M. Narahari, and R. Pendyala, Unsteady natural convection flow of nanofluids past a semi-infinite isothermal vertical plate, AIP Conference Proceedings. 1787 (2016) 020014. http://dx.doi.org/10.1063/1.4968063.

DOI: 10.1063/1.4968063

Google Scholar

[28] S. Kumar, A. D. Kothiyal, M. S. Bisht, A. Kumar, Numerical analysis of thermal hydraulic performance of Al2O3-H2O nanofluid flowing through a protrusion obstacles square mini channel, Case Studies in Thermal Engineering. 9 (2017) 108-121. https://doi.org/10.1016/j.csite.2017.01.004.

DOI: 10.1016/j.csite.2017.01.004

Google Scholar

[29] A. Bejan, Convection heat transfer, third Edition, Wiley, New-York, (2004).

Google Scholar