[1]
I. Mjallal , H. Farhat, M. Hammoud , S. Ali and I. Assi, Improving the cooling efficiency of heat sinks through the use of different types of phase change materials, Technologies. 6 (1) (2018) 5 https://doi.org/10.3390/technologies6010005.
DOI: 10.3390/technologies6010005
Google Scholar
[2]
S.S. Khaleduzzaman, R.Saidur, Jeyraj Selvaraj, I.M. Mahbubul, M.R. Sohel, I.M. Shahrul, Nanofluids for thermal performance improvement in cooling of electronic device, Advanced Materials Research. 832 (2014) 218-223. https://doi.org/10.4028/www.scientific.net/AMR.832.218.
DOI: 10.4028/www.scientific.net/amr.832.218
Google Scholar
[3]
A. Hamouche, Refroidissement à air des composants électroniques par convection Mixte, Thèse magister, Université Mentouri de Constantine, (2007).
Google Scholar
[4]
H.W Wu, S.W Perng, Effect of an oblique plate on the heat transfer enhancement of mixed convection over heated blocks in horizontal channel, International Journal of Heat Transfer. 42 (1999) 1217-1235. https://doi.org/10.1016/S0017-9310(98)00247-6.
DOI: 10.1016/s0017-9310(98)00247-6
Google Scholar
[5]
B. Premachandran and C. Balaji, Conjugate mixed convection with surface Radiation from a horizontal channel with protruding heat sources, International Journal of Heat and Mass Transfer. 49 (2006) 3568-3582. https://doi.org/10.1016/j.ijheatmasstransfer.2006.02.044.
DOI: 10.1016/j.ijheatmasstransfer.2006.02.044
Google Scholar
[6]
T. J. Young, K. Vafai, Convective flow and heat transfer in a channel containing multiple heated obstacles, International Journal of Heat and Mass Transfer. 41 (1998) 3279-3298. https://doi.org/10.1016/S0017-9310(98)00014-3.
DOI: 10.1016/s0017-9310(98)00014-3
Google Scholar
[7]
M. Kmiotek and A. Kucaba-piętal, Influence of slim obstacle geometry on the flow and heat transfer in microchannels, Bulletin of the Polish Academy of Sciences Technical Sciences. 66, No. 2 (2018). https://doi.org/10.24425/119064.
Google Scholar
[8]
H. Togun, Laminar CuO-water nano-fluid flow and heat transfer in a backward-facing step with and without obstacle, Applied Nanoscience. 6 (2016) 371-378. https://doi.org/10.1007/s13204-015-0441-7.
DOI: 10.1007/s13204-015-0441-7
Google Scholar
[9]
F. Mebarek-Oudina, R. Bessaïh, Numerical simulation of natural convection heat transfer of copper-Water nanofluid in a vertical cylindrical annulus with heat sources, Thermophysics and Aeromechanics. 26 (3) (2019) 325-334. https://doi.org/10.1134/S0869864319030028.
DOI: 10.1134/s0869864319030028
Google Scholar
[10]
F. Mebarek-Oudina, Convective heat transfer of Titania nanofluids of different base fluids in cylindrical annulus with discrete heat source, Heat Transfer-Asian Research. 48(1) (2019) 135-147. https://doi.org/10.1002/htj.21375.
DOI: 10.1002/htj.21375
Google Scholar
[11]
B. Mahanthesh, G. Lorenzini, F. Mebarek-Oudina and I. L. Animasaun, Significance of exponential space- and thermal-dependent heat source effects on nanofluid flow due to radially elongated disk with Coriolis and Lorentz forces, Journal of Thermal Analysis and Calorimetry (2019). https://doi.org/10.1007/s10973-019-08985-0.
DOI: 10.1007/s10973-019-08985-0
Google Scholar
[12]
R. Mohebbi, M. Izadi, H. Sajjadi, A. A. Delouei, M.A. Sheremet, Examining of nanofluid natural convection heat transfer in a Γ-shaped enclosure including a rectangular hot obstacle using the lattice Boltzmann method, Physica A: Statistical Mechanics and its Applications. 526 (2019) 120831. https://doi.org/10.1016/j.physa.2019.04.067.
DOI: 10.1016/j.physa.2019.04.067
Google Scholar
[13]
H. Laouira, F. Mebarek Oudina, A. K. Hussein, L. Kolsi, A. Merah, O. Younis, Heat transfer inside a horizontal channel with an open trapezoidal enclosure subjected to a heat source of different lengths, Heat Transfer-Asian Research. 49 (1) (2020) 406-423. https://doi.org/10.1002/htj.21618.
DOI: 10.1002/htj.21618
Google Scholar
[14]
F. Mebarek-Oudina, S. Marzougui, A. Abderrahmane, M. Magherbi, Z. Shah, K. Ramesh, Entropy generation on Magneto-Convective flow of Copper-Water nanofluid in a cavity with chamfers, Journal of Thermal Analysis and Calorimetry (2020). https://doi.org/10.1007/s10973-020-09662-3.
DOI: 10.1007/s10973-020-09662-3
Google Scholar
[15]
G. Huminic, A. Huminic, Entropy generation of nanofluid and hybrid nanofluid flow in thermal systems: A review, Journal of Molecular Liquids. 302 (2020) 112533. https://doi.org/10.1016/j.molliq.2020.112533.
DOI: 10.1016/j.molliq.2020.112533
Google Scholar
[16]
J. Alsarraf, A. Shahsavar, M. Khaki, R. Ranjbarzadeh , A. Karimipour, M. Afrand, Numerical investigation on the effect of four constant temperature pipes on natural cooling of electronic heat sink by nanofluids: A multifunctional optimization, Advanced Powder Technology. 31 (2020) 416-432. https://doi.org/10.1016/j.apt.2019.10.035.
DOI: 10.1016/j.apt.2019.10.035
Google Scholar
[17]
F. Selimefendigil, H. F. Öztop, Control of natural convection in a CNT-water nanofluid filled 3D cavity by using an inner T-shaped obstacle and thermoelectric cooler, International Journal of Mechanical Sciences. 169 (2020) 105104. https://doi.org/10.1016/j.ijmecsci.2019.105104.
DOI: 10.1016/j.ijmecsci.2019.105104
Google Scholar
[18]
M. A. Hssain, R. Mir and Y. El Hammami, Numerical Simulation of the cooling of heated electronic blocks in horizontal channel by mixed convection of nanofluids, Journal of Nanomaterials. 2020 (2020) 11 pages. https://doi.org/10.1155/2020/4187074.
DOI: 10.1155/2020/4187074
Google Scholar
[19]
T.E. Amin, G. Roghayeh, R. Fatemeh and P. Fatollah, Evaluation of nanoparticle shape effect on a nanofluid based flat-plate solar collector efficiency, Energy Exploration & Exploitation. (33) (5) (2015) 659-676. https://doi.org/10.1260/0144-5987.33.5.659.
DOI: 10.1260/0144-5987.33.5.659
Google Scholar
[20]
M. Corcione, Heat transfer features of buoyancy-driven nanofluids inside rectangular enclosures differentially heated at the sidewalls, International Journal of Thermal Science. 49 (2010) 1536-1546. https://doi.org/10.1016/j.ijthermalsci.2010.05.005.
DOI: 10.1016/j.ijthermalsci.2010.05.005
Google Scholar
[21]
H.E Patel, T. Sundarrajan, T. Pradeep, A. Dasgupta, N. Dasgupta and S.K. Das, A micro-convection model for thermal conductivity of nanofluid, Pramana Journal Physique. 65 (2005) 863-869, https://doi.org/10.1007/BF02704086.
DOI: 10.1007/bf02704086
Google Scholar
[22]
N. M. Muhammad and N. A. C. Sidik, Numerical analysis on thermal and hydraulic performance of diverging-converging minichannel heat sink using Al2O3-H2O nanofluid, IOP Conf. Series: Materials Science and Engineering. 469 (2019). https://doi.org/10.1088/1757-899X/469/1/012046.
DOI: 10.1088/1757-899x/469/1/012046
Google Scholar
[23]
K. M. Mostafa, R. Ardehali and A. Ijam, CFD investigation of nanofluid effects (cooling performance and pressure drop) in mini-channel heat sink, International Communications in Heat and Mass Transfer. 40 (2013) 58-66. https://doi.org/10.1016/j.icheatmasstransfer.2012.10.021.
DOI: 10.1016/j.icheatmasstransfer.2012.10.021
Google Scholar
[24]
F. Selimefendigil, H. F. Öztop, N. Abu-Hamdeh, Mixed convection due to rotating cylinder in an internally heated and flexible walled cavity filled with SiO2–water nanofluids: Effect of nanoparticle shape, International Communications in Heat and Mass Transfer. 71 (2016) 9-19. https://doi.org/10.1016/j.icheatmasstransfer.2015.12.007.
DOI: 10.1016/j.icheatmasstransfer.2015.12.007
Google Scholar
[25]
K. A. Jehhef, R. H. Khanjar and M. A. Siba, Convection heat transfer enhancement in square cross-section with obstacle using nanofluids, IOP Conf. Series: Materials Science and Engineering. 518 (2019). https://doi.org/10.1088/1757-899X/518/3/032004.
DOI: 10.1088/1757-899x/518/3/032004
Google Scholar
[26]
G. Ali Sheikhzadeh, A. Aghaei, S. soleimani, Effect of nanoparticle shape on natural convection heat transfer in a square cavity with partitions using water-SiO2 nanofluid, Trans. Phenom. Nano Micro Scales. 6(1) (2018) 27-38. https://dx.doi.org/10.22111/tpnms.2018.3520.
Google Scholar
[27]
S. Tippa, M. Narahari, and R. Pendyala, Unsteady natural convection flow of nanofluids past a semi-infinite isothermal vertical plate, AIP Conference Proceedings. 1787 (2016) 020014. http://dx.doi.org/10.1063/1.4968063.
DOI: 10.1063/1.4968063
Google Scholar
[28]
S. Kumar, A. D. Kothiyal, M. S. Bisht, A. Kumar, Numerical analysis of thermal hydraulic performance of Al2O3-H2O nanofluid flowing through a protrusion obstacles square mini channel, Case Studies in Thermal Engineering. 9 (2017) 108-121. https://doi.org/10.1016/j.csite.2017.01.004.
DOI: 10.1016/j.csite.2017.01.004
Google Scholar
[29]
A. Bejan, Convection heat transfer, third Edition, Wiley, New-York, (2004).
Google Scholar