[1]
N. Shankar, M.D. Deshpande, Fluid mechanics in the driven cavity, Annu. Rev. Fluid. Mech. 32 (2000) 93–136.
DOI: 10.1146/annurev.fluid.32.1.93
Google Scholar
[2]
H. C. Kuhlmann, F. Romanò, The lid-driven cavity, in: A. Gelfgat, (Ed.), Computational Modelling of Bifurcations and Instabilities in Fluid Dynamics, Springer, Cham, 2019, pp.233-309.
DOI: 10.1007/978-3-319-91494-7_8
Google Scholar
[3]
H. F. Oztop, I. Dagtekin, Mixed Convection in Two-Sided Lid-Driven Differentially Heated Square Cavity, Int. J. Heat. Mass. Transf. 47 (2004), 1761-1769.
DOI: 10.1016/j.ijheatmasstransfer.2003.10.016
Google Scholar
[4]
A.K. Hussein, S. Hussain, Mixed convection through a lid-driven air–filled square cavity with a hot wavy wall, Int. J. Mech. Mater. Eng. 5 (2010) 222-235.
Google Scholar
[5]
S. Sivasankaran, V. Sivakumar, A.K Hussein, Numerical study on mixed convection in an inclined lid-driven cavity with discrete heating, Int. Commun. Heat. Mass. Transf. 46 (2013) 112-125.
DOI: 10.1016/j.icheatmasstransfer.2013.05.022
Google Scholar
[6]
M. A. Ismael, I. Pop, A. J. Chamkha, Mixed Convection in a Lid-Driven Square Cavity with Partial Slip, Int. J. Therm. Sci. 82 (2014) 47-61.
DOI: 10.1016/j.ijthermalsci.2014.03.007
Google Scholar
[7]
S. Sivasankaran, V. Sivakumar, A.K. Hussein, P. Prakash. Mixed convection in a lid-driven two-dimensional square cavity with corner heating and internal heat generation, Numer. Heat Transf. A. 65 (2014) 269-286.
DOI: 10.1080/10407782.2013.826017
Google Scholar
[8]
S. Hussain, Characteristics of magnetohydrodynamic mixed convection in a parallel motion two-sided lid- driven differentially heated parallelogrammic cavity with various skew angles, J. Therm. Eng. 1 (2015) 221-235.
DOI: 10.18186/jte.66113
Google Scholar
[9]
J.R. Koseff, R.L. Street, Visualization studies of a shear driven three-dimensional recirculating flow, J. Fluids. Eng. 106 (1984) 21-29.
DOI: 10.1115/1.3242393
Google Scholar
[10]
U. Ghia, K.N. Ghia, C. Shin, High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, J. Comput. Phys. 48 (1982) 387–411.
DOI: 10.1016/0021-9991(82)90058-4
Google Scholar
[11]
R. Schreiber, H. Keller, Driven cavity flows by efficient numerical techniques, J. Comput. Phys. 49 (1983) 310–333.
DOI: 10.1016/0021-9991(83)90129-8
Google Scholar
[12]
M.M. Gupta, J.C. Kalita, A new paradigm for solving NavierStokes equations: streamfunction–velocity formulation, J. Comput. Phys. 207 (2005) 52–68.
DOI: 10.1016/j.jcp.2005.01.002
Google Scholar
[13]
Y-H. Peng, Y-H. Shiau, R.R. Hwang, Transition in a 2-D lid-driven cavity flow, Comput. Fluids. 32 (2003) 337–352.
DOI: 10.1016/s0045-7930(01)00053-6
Google Scholar
[14]
J.R. Murdock, J.C. Ickes, S.L. Yang, Transition flow with an incompressible lattice Boltzmann method, Adv. Appl. Math. Mech. 9 (2017) 1271–1288.
DOI: 10.4208/aamm.oa-2016-0103
Google Scholar
[15]
A.N. Nuriev, A.G. Egorov, O.N. Zaitseva, Bifurcation analysis of steady-state flows in the lid-driven cavity, Fluid. Dyn. Res. 48 (2016) 061405–1–06140515.
DOI: 10.1088/0169-5983/48/6/061405
Google Scholar
[16]
B. AN, F. Mellibovsky, J.M. Bergadà, W.M. Sang, Towards a better understanding of wall-driven square cavity flows using the Lattice Boltzmann method, Appl. Math. Model. 82 (2020) 469-486.
DOI: 10.1016/j.apm.2020.01.057
Google Scholar
[17]
F. Auteri, N. Parolini, L. Quartapelle, Numerical investigation on the stability of singular driven cavity flow, J. Comput. Phys. 183 (2002) 1–25.
DOI: 10.1006/jcph.2002.7145
Google Scholar
[18]
E. Erturk, Discussions on driven cavity flow, Int. J. Numer. Meth. Fluids. 60 (2009) 275–294.
DOI: 10.1002/fld.1887
Google Scholar
[19]
E. Erturk, T.C. Corke, C. Gokcol, Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers, Int J. Numer. Method. Fluids. 48 (2005) 747–774.
DOI: 10.1002/fld.953
Google Scholar
[20]
E.M. Wahba. Steady flow simulations inside a driven cavity up to Reynolds number 35000, J. Comput. Fluids. 66 (2012) 85–97.
DOI: 10.1016/j.compfluid.2012.06.012
Google Scholar
[21]
E.A. Azzouz, S. Houat, O. Benhizia, Numerical study of steady flow inside a lid-driven square cavity for Reynolds number up to 50000, 23 rd French Mechanical Congress, Lille, French, (2017).
Google Scholar
[22]
B. An, J.M. Bergadà, F. Mellibovsky, W.M. Sang, New applications of numerical simulation based on lattice Boltzmann method at high Reynolds numbers, Comput. Math. Appl. 79 (2019) 1718-1741.
DOI: 10.1016/j.camwa.2019.10.002
Google Scholar
[23]
H.C. Kuhlmann, M. Wanschura, and H.J. Rath, Flow in two-sided lid-driven cavities: non-uniqueness, instabilities, and cellular structures, J. Fluid. Mech. 336 (1997) 267–299.
DOI: 10.1017/s0022112096004727
Google Scholar
[24]
H.C. Kuhlmann, M. Wanschura, and H.J. Rath, Elliptic instability in two-sided lid-driven cavity flow, Eur J. Mech. B/Fluids. 17 (1998) 561–569.
DOI: 10.1016/s0997-7546(98)80011-3
Google Scholar
[25]
S. Albensoeder, H. Kuhlmann, H. Rath, Multiplicity of steady two-dimensional flows in two-sided lid-driven cavities, J. Theor. Comput. Fluid. Dyn. 14 (2001) 223–41.
DOI: 10.1007/s001620050138
Google Scholar
[26]
K.T. Chen, C.C. Tsai, W.J. Luo, C.N. Chen, Multiplicity of Steady Solutions in a Two-Sided Lid-Driven Cavity with Different Aspect Ratios, J. Theor. Comput. Dyn. 27(2013) 767-776.
DOI: 10.1007/s00162-013-0296-z
Google Scholar
[27]
K.T. Chen, C.C. Tsai, C.W. Lu, W.J. Luo, C.H. Chen, Aspect ratio effect on multiple flows solution in a two-sided parallel motion lid-driven cavity, J. Mech. 31 (2015) 153-160.
DOI: 10.1017/jmech.2014.51
Google Scholar
[28]
D.A. Perumal, A.K. Dass, Simulation of incompressible flows in two-sided lid– driven square cavities. Part I. FDM, CFD. Lett. 2 (2010) 13–24.
Google Scholar
[29]
D.A. Perumal, A.K. Dass, Simulation of incompressible flows in two-sided lid– driven square cavities. Part II. LBM, CFD. Lett. 2 (2010) 25–38.
Google Scholar
[30]
D.A. Perumal, Simulation of flow in Two-Sided Lid-Driven deep cavities by finite difference method, J. Appl. Sci. Thermodyn. Fluid. Mech. 6 (2012) 1–6.
Google Scholar
[31]
D.A. Perumal, Lattice Boltzmann Computation of Multiple Solutions in a Double Sided Square and Rectangular Cavity Flows, J. Therm. Sci. 6 (2018) 48-56.
DOI: 10.1016/j.tsep.2017.10.009
Google Scholar
[32]
S. Arun, A. Satheesh, Analysis of flow behaviour in a two sided lid driven cavity using lattice Boltzmann technique, J. Alexandria. Eng. 54 (2015) 795-806.
DOI: 10.1016/j.aej.2015.06.005
Google Scholar
[33]
C. Prasad, A.K. Dass, Use of an HOC scheme to determine the existence of multiple steady states in the antiparallel lid-driven flow in a two-sided square cavity, J. Comput. Fluids. 140 (2016) 297-307.
DOI: 10.1016/j.compfluid.2016.10.013
Google Scholar
[34]
T. Lemée, G. Kasperski, G. Labrosse, R. Narayanan, Multiple stable solutions in the 2d symmetrical two-sided square lid-driven cavity, J. Comput. Fluids. 119 (2015) 204–212.
DOI: 10.1016/j.compfluid.2015.05.022
Google Scholar
[35]
J.O. Hinze, Turbulence, McGraw-Hill Publishing Co., New York, (1975).
Google Scholar
[36]
P.R. Spalart, S.R. Allmaras, A one-equation turbulence model for aerodynamics flows, La Rech. Aerosp. 1 (1994) 5–21.
Google Scholar
[37]
S.A. Orszag, V. Yakhot, W.S. Flannery, F. Boysan, D. Choudhury, J. Maruzewski, and B. Patel, Renormalization Group Modeling and Turbulence Simulations, International Conference on Near-Wall Turbulent Flows, Tempe, Arizona, (1993).
Google Scholar
[38]
F.R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA J. 32 (1994) 1598–1605.
DOI: 10.2514/3.12149
Google Scholar
[39]
M.M. Gibson, B.E. Launder, Ground Effects on Pressure Fluctuations in the Atmospheric Boundary Layer, J. Fluid. Mech. 86 (1978) 491–511.
DOI: 10.1017/s0022112078001251
Google Scholar
[40]
B.E. Launder, Second-Moment Closure: Present... and Future, Inter J. Heat. Fluid. Flow. 10 (1989) 282–300.
DOI: 10.1016/0142-727x(89)90017-9
Google Scholar
[41]
B.E. Launder, G.J. Reece, and W. Rodi, Progress in the Development of a Reynolds-Stress Turbulence Closure, J. Fluid. Mech. 68 (1975) 537–566.
DOI: 10.1017/s0022112075001814
Google Scholar
[42]
D.C. Wilcox, Turbulence Modeling for CFD, DCW Industries, Inc., La Canada, California, (1998).
Google Scholar
[43]
J.H. Ferziger, M. Peric, Computational Methods for Fluid Dynamics, Third ed., Springer Verlag, Berlin, (2002).
Google Scholar
[44]
A. Ghobadian, S.A. Vasquez, A General Purpose Implicit Coupled Algorithm for the Solution of Eulerian Multiphase Transport Equation, International Conference on Multiphase Flow, Leipzig, Germany, (2007).
Google Scholar