Drying Kinetics, Desorption Isotherms and Apparent Diffusivity of Sage Leaves

Article Preview

Abstract:

The use of fresh herb is limited in the food and pharmaceutical industry thats why the dry form of the herb is the one commonly used. To save the quality of medicinal and aromatic plants it is very important to provide optimum drying and storage conditions. The aim of this study is to determine and model the drying kinetics of sage leaves. Initially the desorption isotherms are determined for different temperatures (30, 45 and 60°C). The drying experiments were carried out in a convection oven at the same temperature range. For the desorption isotherms and the drying kinetics various models reported in the literature were used and from the statistical view, the Yanniotis and Blahovec and the Fick models fit well the results of desorption isotherms and the oven drying, respectively. The net isosteric heat of desorption of the sage leaves ranged from 6.86 to 63.45 kJ/mol. The total time of oven drying reduced substantially with an increase of the drying temperature. Effective moisture diffusivity values ranged from 1.1x10-12 to 3.7x10-12 m2/s and significantly affected by temperature. An Arrhenius relation with an activation energy value of 66.87 kJ/mol expressed effect of temperature on the diffusivity. Keywords: Desorption isotherms, Drying kinetics, Modelling, Effective diffusivity, Sage leaves

You might also be interested in these eBooks

Info:

Periodical:

Pages:

173-181

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.C Diaz-Maroto, M.S Perez Coello, MD Cabezudo, Effect of differ drying methods on the volatile components of parsley (Petroselinum ispum L.), Eur. Food Res. Technol. 215 (2002) 227-230.

Google Scholar

[2] A. Belghit, M. Kouhila, B.C. Boutaleb, Experimental study of drying kinetics by forced convection of aromatic plants. Energ. Convers. Manage. 41 (2000) 1303-1321.

DOI: 10.1016/s0196-8904(99)00162-4

Google Scholar

[3] U. Siripatrawan, P. Jantawat, Determination of moisture sorption isotherms of jasmine rice crackers using BET and GAB models, Food Sci. Technol Int. 12 (2006) 459–465.

DOI: 10.1177/1082013206072622

Google Scholar

[4] J.V. García-Pérez, J.A. Carcel, M.A. García-Alvadro, A. Mulet, Simulation of grape stalk deep-bed drying. J. Food Eng. 90 (2009) 308-314.

DOI: 10.1016/j.jfoodeng.2008.07.002

Google Scholar

[5] E. Arranz, L. Jaime, M.C. Lopez de la Hazas, G. Vicente, G. Reglero, S. Santoyo, Supercritical sage extracts as anti-inflammatory food ingredients, Ind Crop Prod. 54 (2014) 159-166.

DOI: 10.1016/j.indcrop.2014.01.021

Google Scholar

[6] B. Bozin, N. Mimica-Dukic, I. Samojlik, E. Jovin, Antimicrobial and antioxidant properties of rosemary and sage (Rosmarinus officinalis L. and Salvia officinalis L., Lamiaceae) essential oils, J Agric Food Chem. 55 (2007) 7879-7885.

DOI: 10.1021/jf0715323

Google Scholar

[7] M.M. Ehrnhofer-Ressler, K. Fricke, M. Pignitter, J.M. Walker, J. Walker, M. Rychlik, V. Somoza, Identification of 1, 8-cineole, borneol, camphor, and thujone as anti-inflammatory compounds in a Salvia officinalis L. infusion using human gingival fibroblasts, J Agric Food Chem. 61 (2013) 3451–3459.

DOI: 10.1021/jf305472t

Google Scholar

[8] L.F. DiCesare, E. Forni, D.Viscardi, R.C. Nani, Changes in the chemical composition of basil caused by different drying procedures, J. Agric. Food Chem. 51 (2003) 3575-3581.

DOI: 10.1021/jf021080o

Google Scholar

[9] İ. Doymaz, S. Karasu, Effect of air temperature on drying kinetics, colour changes and total phenolic content of sage leaves (Salvia officinalis), Qual Assur Saf. Crops Foods. 10 (2018) 269-276.

DOI: 10.3920/qas2017.1257

Google Scholar

[10] M. Jebri, H. Desmorieux, A. Maaloul, E. Saadaoui, M. Romdhane, Drying of Salvia officinalis L. by hot air and microwaves: dynamic desorption isotherms, drying kinetics and biochemical quality, Heat Mass Transfer. 55 (2018) 1143-1153.

DOI: 10.1007/s00231-018-2498-9

Google Scholar

[11] O. Bensebia, K. Allia, Analysis of adsorption–desorption moisture isotherms of rosemary leaves, J. Appl Res. Med Aroma Plants. 3 (2016) 79–86.

DOI: 10.1016/j.jarmap.2016.01.005

Google Scholar

[12] C.J. Lomauro, A.S. Bakshi, T.P. Labuza, Evaluation of food moisture sorption isotherm equations. Part I. Fruit: Vegetable and Meat Products, LWT-Food Sci. Technol. 18 (1985) 111–117.

Google Scholar

[13] S. Yanniotis, J. Blahovec, Model analysis of sorption isotherms, LWT-Food Sci. Technol. 42 (2009) 1688–1695.

DOI: 10.1016/j.lwt.2009.05.010

Google Scholar

[14] E.Tsami, Net isosteric heat of sorption in dried fruits, J. Food Eng. 14 (1991) 327–335.

DOI: 10.1016/0260-8774(91)90022-k

Google Scholar

[15] A. Arabhossein, W. Huisman, A.Van Boxtel, J.Müller, Modeling of thin layer drying of tarragon (Artemisia dracuncuhus L.), Ind Crops Prod. 29 (2009) 53-59.

DOI: 10.1016/j.indcrop.2008.04.005

Google Scholar

[16] I. Doymaz, Thin layer drying behaviour of mint leaves, J. Food Eng., 74 (2006) 370-375.

DOI: 10.1016/j.jfoodeng.2005.03.009

Google Scholar

[17] M. Ozdemir, Y.O Devers, The thin layer drying characteristics of hazelnuts during roasting, J. Food Eng. 42 (1999) 225-233.

DOI: 10.1016/s0260-8774(99)00126-0

Google Scholar

[18] J. Cranck, The mathematics of diffusion, second ed., Oxford, UK. Clarendon Press, (1975).

Google Scholar

[19] C.S. Ethmane Kane, M. Kouhila, A. Lamharrar, A. Idlimam, A. Mimet, Moisture sorption isotherms and thermodynamic properties of two mints: Mentha pulegium and Mentha roundifolia, Revue des Energies Renouvelables. 11 (2008) 181-195.

DOI: 10.3923/ja.2008.1.14

Google Scholar

[20] H. Machhour, A. Idlimam, M. Mahrouz, I. El Hadrami , M. Kouhila, Sorption isotherms and thermodynamic properties of peppermint tea (Mentha piperita) after thermal and biochemical treatment, J. Mater. Environ. Sci. 3 (2012) 232-247.

Google Scholar

[21] S. Cenkowski, D.S. Jayas, D. Hao, Latent heat of vaporization for selected foods and crops, Can. Agric. Eng. 34 (1992) 281–286.

Google Scholar

[22] K.J. Park, Z. Vohnikova, F.P.R. Brad, Evaluation of drying parameters and desorption isotherms of garden mint leaves (Mentha crispa L.), J. Food Eng. 51 (2002) 193-199.

DOI: 10.1016/s0260-8774(01)00055-3

Google Scholar

[23] O. Bensebia, K. Allia, Drying and Extraction Kinetics of Rosemary Leaves: Experiments and Modeling, J. Essent Oil Bear Plants. 18 (2015) 99-111.

DOI: 10.1080/0972060x.2014.901620

Google Scholar

[24] A. Kaya, O. Aydin, An experimental study on drying kinetics of some herbal leaves. Energ. Convers. Manage. 50 (2009) 118-124.

Google Scholar