Corrosion Behavior of Electrodeposited Nickel Coating Reinforced by Cr2O3 Particles

Article Preview

Abstract:

The objective of this work is the characterisation of the composite deposits Ni-Cr2O3 on copper substrate; these deposits are obtained from bath of electro-deposition of Nickel watts. The different electrodeposited layers are characterized by various analytical techniques such as adhesion quality, corrosion tests, Vickers microhardness, morphology by scanning electron microscopy Followed by EDX microanalysis and X-ray diffraction. The corrosion tests are realized in a solution of 3.5 % NaCl using lost mass method, polarization and impedance spectroscopy techniques. It was found that the composite coatings Ni-Cr2O3 have an homogeneous and compact morphology, well crystallized and exhibit a high degree of codeposition of Cr2O3 particles incorporated in the nickel matrix. The co-deposited films have very good hardness, adhere perfectly to the substrate and are more resistant to corrosion.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

203-218

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Brasher, A.D. Mercer, British Corrosion Journal, Vol. 3, Issue 3, (1968) 120-129.

Google Scholar

[2] F. Druesne, P. Paumelle, Journées Techniques Corrosion et anticorrosion, Cetim, Bordeaux, France (1997).

Google Scholar

[3] Y. Zhou, H. Zhang, B. Qian, J. Appl. Surf. Sci. 253, Issue 20 (2007) 8335-8339.

Google Scholar

[4] K.H. Hou, M.D. Ger, L.M. Wang, S.T. Ke, Wear 253, Issue 9-10 (2002) 994-1003.

Google Scholar

[5] M. Sarret, C. Müller and A. Amell, Surf. Coat. Technol., 201, Issue 1-2 (2006) 389-395.

Google Scholar

[6] J. Bernard, A. Michel, J. Philibert, J. Talbot, Métallurgie Générale, 2ème Edition, Masson, Paris, (1991).

Google Scholar

[7] J.P Cellis, J.R. Roos, Oberflache Surface 24, Heft 10 (1993) 352-357.

Google Scholar

[8] C. Siad, A. Mekkaoui, O. Belahssen, A. Chala, Acta Metallurgica Slovaca, Vol. 23, N° 1 (2017) 37-44.

DOI: 10.12776/ams.v23i1.846

Google Scholar

[9] R‏. Levy, M‏. Saurat, Technique de l'ingénieur (1989) M 1680.

Google Scholar

[10] Manuel de VoltaMaster 1-Version 3.04 (RADIOMETER, Copenhagen).

Google Scholar

[11] M. Stern, A. L. Geary, J. Electrochem. Soc., 104 (1957) 56-63.

Google Scholar

[12] R. Ozdemir, I.H. Karahan, J. Optoelectron. Adv. Mater. Vol. 17, N° 1-2 (2015) 14-26.

Google Scholar

[13] Z. Abdelhamid and S. M. El-Sheikh, Journal of Metallurgical Engineering, Vol. 2, Issue 2 (2013) 71-79.

Google Scholar

[14] A. Robin, and R.Q. Fratari, J. Appl. Electrochem., 37 (2007) 805-812.

Google Scholar

[15] M. Eslami, H. Saghafian, F. Golestani-fard , A. Robin, Applied Surface Science 300 (2014) 129-140.

Google Scholar

[16] S. Rahemi Ardakani, A. Afshar, S. Sadreddini, A.A. Ghanbari, Materials Chemistry and Physics 189 (2017) 207-214.

DOI: 10.1016/j.matchemphys.2016.12.023

Google Scholar

[17] Z. Abdelhamid and M.T. Abou Elkhair, Mater. Lett., Vol. 57, Issue 3‏ (2002) 720-726.

Google Scholar

[18] A. Abdel Aal, M. Bahgat, M. Radwan, Surf. Coat. Technol., 201 (2006) 2910-2918.

Google Scholar

[19] M. Srivastava, A. Srinivasan, V.K. William Grips, American Journal of Materials Science, 1(2) (2011) 113-122.

Google Scholar

[20] F. Su, C. Liu, P. Huang, Wear 300 (2013) 114-125.

Google Scholar

[21] N. Malatji, A.P.I. Popoola, Int. J. Electrochem. Sci., 10 (2015) 3988-4003.

Google Scholar

[22] Z. Abdelhamid, Journal of Metallurgical Engineering (ME), Vol. 3, Issue 1 (2014) 29-42.

Google Scholar

[23] D. Landolt, Corrosion et Chimie de Surface des Métaux, 1st Edition, Alden Press, Oxford, (1993).

Google Scholar

[24] S. Martinez, M. Mansfeld- Hukovic, J. Appl. Electrochem. 33 (2003) 1137-1142.

Google Scholar

[25] M. Elayyachy, A. El Idrissi, B. Hammouti, Corros. Sci. 48 (2006) 2470-2479.

Google Scholar

[26] Z. Stoynov, Electrochim. Acta, 35 (1990) 1493-1499.

Google Scholar

[27] A. Yurt, S. Ulutas, H. Dal, Appl. Surf. Sci. 253 (2006) 919-925.

Google Scholar

[28] M. Azzi, M. Paquette, J.A. Szpunar, J.E. Klemberg-Sapieha, L. Martinu, Wear 267 (2009) 860-866.

DOI: 10.1016/j.wear.2009.02.006

Google Scholar

[29] S. Ben Aoun, RSC Advances, 7 (2017) 36688-36696.

Google Scholar

[30] K.F. Khaled, N. Hackerman, Electrochem. Acta, 49 (2004) 485-495.

Google Scholar

[31] X.H. Chen, C.S. Chen, H.N. Xiao, F.Q. Cheng, G. Zhang, G.J. Yi, Surf. Coat. Technol., 191 (2005) 351-356.

Google Scholar

[32] B. Matthes, E. Broszeit, J. Aromaa, H. Ronkainen, S.P. Hannula, A. Leyland, A. Matthews, Surf. Coat. Technol., 49 (1-3) (1991) 489-495.

DOI: 10.1016/b978-0-444-89455-7.50091-5

Google Scholar

[33] O. Mauricio S. Quintero, W. Aperador Chaparro, L. Ipaz, J. Eduardo Sánchez Barco, F. Espinoza Beltrán, G. Zambrano, Materials Research. 16 (1) (2013) 204-214.

Google Scholar

[34] L. Benea, P. L. Bonora, A. Borello, and S. Martelli, Wear 249, Issues 10-11 (2001) 995-1003.

DOI: 10.1016/s0043-1648(01)00844-4

Google Scholar

[35] R.A. Shakoor, Ramazan Kahraman, Umesh S. Waware, Yuxin Wang, Wei Gao, Int. J. Electrochem. Sci., 10 (2015) 2110-2119.

Google Scholar

[36] F. Hou, W. Wang, H. Guo, J. Appl. Surf. Sci. 252 (2006) 3812-3817.

Google Scholar

[37] H.P. Klung, L.E. Alexander, X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, Ed. Wiley VCH, 2nd Edition, (1974).

Google Scholar

[38] D. Balzar, Profile fitting of X-ray diffraction lines and Fourier analysis of broadening. Journal of Applied Crystallography, 25 (1992) 559-570.

DOI: 10.1107/s0021889892004084

Google Scholar