Study of the Structural, Dynamic and Thermodynamic Properties of the III- Antimonides Semiconductors

Article Preview

Abstract:

In the present contribution, structural, dynamic, and some thermodynamic properties of the III-Antimonides are studied using the density-functional perturbation theory (DFPT) within the local density approximation (LDA) in combination with the harmonic approximation Our results for the structural properties such as the lattice constant and the bulk modulus were found to agree well with the previous theoretical and experimental works. We have also calculated the phonon dispersion relation, and we found that our phonon calculations show that these compounds are dynamically stable in the zinc blende phase moreover our results of the optical and acoustic phonon frequencies at the high symmetry points Γ, X and L are in good agreement with the available theoretical and experimental data. In addition, the thermodynamic properties, including the free energy, internal energy, entropy, and the heat capacity at constant volume were predicted and discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

250-255

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Kalt, Optical properties of III–V semiconductors, ed. by H-J. Queisser, Springer, Berlin, (1998).

Google Scholar

[2] S. Bounab, A. Bentabet, Y. Bouhadda, Gh. Belgoumri, N. Fenineche, First-Principles Calculations of Structural, Electronic and Optical Properties of Ternary Semiconductor Alloys ZAs xSb1−x (Z = B, Al, Ga, In), Journal of Electronic Materials 46 (2017) 4805–4814.

DOI: 10.1007/s11664-017-5425-9

Google Scholar

[3] H. Salehi, H. A. Badehian and M.Farbod, First principle study of the physical properties of semiconducting binary antimonide compounds under hydrostatic pressures, Science in Semiconductor Processing 26 (2014) 477–490.

DOI: 10.1016/j.mssp.2014.05.020

Google Scholar

[4] X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G. -M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F.Jollet, M.Torrent, A. Roy, M. Mikami, Ph. Ghosez, J.-Y. Raty, and D.C. Allan, First-principles computation of material properties: the ABINIT software project, Comput.Mater.Sci. 25 (2002) 478– 492.

DOI: 10.1016/s0927-0256(02)00325-7

Google Scholar

[5] D.M. Ceperley, and B.J. Alder, Ground State of the Electron Gas by a Stochastic Method, Phys.Rev.Lett. 45 (1980) 566- 568.

DOI: 10.1103/physrevlett.45.566

Google Scholar

[6] J.P. Perdew, and A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Phys.Rev.B. 23 (1981)5048– 5079.

DOI: 10.1103/physrevb.23.5048

Google Scholar

[7] C. Hartwigsen, S. Goedecker, J. Hutter, Relativistic separable dual-space Gaussian pseudopotentials from H to Rn, Phys. Rev. B 58 (1998) 3641- 3662.

DOI: 10.1103/physrevb.58.3641

Google Scholar

[8] H. J. Monkhorst, and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B, 13 (1976) 5189- 5192.

DOI: 10.1103/physrevb.13.5188

Google Scholar

[9] P. Giannozzi, S. de Gironcoli, P. Pavone, and S. Baroni, Ab initio calculation of phonon dispersions in semiconductors, Phys. Rev. B. 43 (1991) 7231– 7242.

DOI: 10.1103/physrevb.43.7231

Google Scholar

[10] X. Gonze, and C. Lee, Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory, Phys. Rev. B. . 55 (1997) 10355– 10368.

DOI: 10.1103/physrevb.55.10355

Google Scholar

[11] X. Gonze, First-principles responses of solids to atomic displacements and homogeneous electric fields: Implementation of a conjugate-gradient algorithm, Phys. Rev. B. 55 (1997) 10337– 10354.

DOI: 10.1103/physrevb.55.10337

Google Scholar

[12] Ph. Ghosez, J.-P. Michenaud, and X. Gonze, Dynamical atomic charges: The case of ABO3 compounds, Phys. Rev. B. 58 (1998) 6224– 6240.

DOI: 10.1103/physrevb.58.6224

Google Scholar

[13] C. Lee, and X. Gonze, Ab initio calculation of the thermodynamic properties and atomic temperature factors of SiO2 α-quartz and stishovite, Phys. Rev. B. 51 (1995) 8610– 8613.

DOI: 10.1103/physrevb.51.8610

Google Scholar

[14] D. Touat, M. Ferhat and A. Zaoui, Dynamical behaviour in the boron III–V group:a first-principles study, J. Phys.: Condens. Matter. 18 (2003) 3647–3654.

DOI: 10.1088/0953-8984/18/15/011

Google Scholar

[15] G. Gӧkoğlu,  Theoretical investigation of zincblende AlSb and GaSb compounds, Journal of Alloys and Compounds. 478 (2009) 653–656.

DOI: 10.1016/j.jallcom.2008.11.097

Google Scholar

[16] K. Strössner, S. Ves, C.K. Kim and M. Cardona, Dependence of the direct and indirect gap of AlSb on hydrostatic pressure, Phys. Rev. B Condens Matter. 33 (1986) 4044–4053.

DOI: 10.1103/physrevb.33.4044

Google Scholar

[17] S. Hussain, S. Dalui, R.K. Roy, and A.K. Pal, Synthesis of B-Sb by rapid thermal annealing of B/Sb multilayer films, J. Phys. D: Appl. Phys. 39 (2006) 2053- (2058).

DOI: 10.1088/0022-3727/39/10/012

Google Scholar

[18] H.-J. Hou and F.-J. Kong, Theoretical investigation on the structural, dynamical, and thermodynamic properties of the zinc‐blende InX (X = P, As, Sb), Phys. Status Solidi B. 248 (2011) 1399– 1404.

DOI: 10.1002/pssb.201046479

Google Scholar

[19] K. H. Hellwege and O. Madelung, Landolt-Bo¨rnstein, Numerical Data and Functional Relationships in Science and Technology, new series, Berlin, Germany: Springer, 1982, Vol. 17.

Google Scholar

[20] F.D. Murnaghan, The Compressibility of Media under Extreme Pressures, Proc. Natl. Acad. Sci. U.S.A. 30 ( 1944) 244–247.

DOI: 10.1073/pnas.30.9.244

Google Scholar

[21] N. Benyahia, A. Zaoui, D. Madouri, and M. Ferhat, Dynamic properties of III–V polytypes from density-functional theory, J. Appl. Phys. 121 (2017) 125701–125706.

DOI: 10.1063/1.4979011

Google Scholar

[22] P. K. Jha, S. Rath and S. P Sanyal, Phonon dispersion in aluminium arsenide and antimonide, PRAMANA journal of physics. 49 (1997) 547-553.

DOI: 10.1007/bf02875236

Google Scholar

[23] M. K. Farr, J. G. Traylor, and S. K. Sinha, Lattice dynamics of GaSb, Phys. Rev. B. 11 (1975) 1587- 1594.

DOI: 10.1103/physrevb.11.1587

Google Scholar

[24] D.J. Lakewood, GuolinYu and N.L. Rowell, Optical phonon frequencies and damping in AlAs, GaP, GaAs, InP, InAs and InSb studied by oblique incidence infrared spectroscopy, Solid State Communications. 136 (2005) 404-409.

DOI: 10.1016/j.ssc.2005.08.030

Google Scholar

[25] P.Debye, Zur theorie der spezifischen Wärmen, Ann. Phys. 39 (1912) 789-839.

DOI: 10.1002/andp.19123441404

Google Scholar

[26] N. Bioud, K. Kassali, and N. Bouarissa, Thermodynamic Properties of Compressed CuX (X = Cl, Br) Compounds: Ab Initio Study. Journal of Elec Materi.  46 (2017) 2521-2528.

DOI: 10.1007/s11664-017-5335-x

Google Scholar

[27] S. Bounab, Y. Bouhadda, A. Bentabet, Theoretical prediction of the structural, elastic, electronic, and thermodynamic properties of the Nowotny-Juza LiMgAsxSb1-x alloy. Computational Condensed Matter 21 (2019) e00401.

DOI: 10.1016/j.cocom.2019.e00401

Google Scholar