The Calcination Temperature Effect on the Phase Formation of the PZT Ceramic: How the same Calcination Temperature, Result in Different Phase’s Formation

Article Preview

Abstract:

First, the metallic oxides of PbO, TiO2 and ZrO2 were mixed following (2, 1, 1) molar mass respectively. Then 4 samples were separated (S1, S2, S3 and S4). the first one S1 was subjected to calcination treatments at 600, 700 and 800 °C however, the S2 was treated at 700 °C only, the S3 at 800 °C and S4 at 850 °C. The X ray diffraction of the samples reveals important difference in the phases obtained, at 600 °C the quadratic riche phase of PbTiO3 was mainly observed on sample S1, after the treatment at 700 °C and 800°C, the same XRD patterns were obtained with the same peaks positions and the relative intensity. However the S2 revels different pattern from S1 at 700 °C relative to the formation of the Pb(Zr0.75, Ti0.25)O3 Rhombohedral riche phase. The S3 XRD results reveal also different pattern from S1 at 800 °C relative to the formation of Pb (Zr0.58, Ti0.42) O3 near the Morphotropic phase boundary (MPB) and the S4 confirm these finding. Thin films grown from the S1 and S4 used as target in the RF sputtering system, show important difference in the PZT stoichiometry obtained which is relative to Pb (Zr0.44, Ti0.56) located in the quadratic riche phase and Pb (Zr0.52, Ti0.48) O3 near the MPB respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

256-264

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Souzaa, E.C.F.; Simoes, A.Z.; Cilensea, M.; Longoa, E.; Varelaa, J.A. The effect of Nb doping on ferroelectric properties of PZT thin films prepared from polymeric precursors. j.matchemphys. 88 (2004) 155–159. DOI: :10.1016.

DOI: 10.1016/j.matchemphys.2004.06.035

Google Scholar

[2] Scott JF. Applications of Modern Ferroelectrics. Science. 2007, 5814, 954-959.DOI: 10.1126.

Google Scholar

[3] Sette, D.; Girod, S.; Leturcq, R.; Glinsek, S.; Defay E. Transparent Ferroelectric Capacitors on Glass. Micromachines 2017, 8-313. DOI: 10.3390.

DOI: 10.3390/mi8100313

Google Scholar

[4] Chia-Pin, Yeh.; Marco, Lisker.; Bodo, Kalkofen.; Edmund, P. Burte. Fabrication and investigation of three-dimensional ferroelectric capacitors for the application of FeRAM. AIP Advances, 6 (2016) 035128 -12. DOI: 10.1063.

DOI: 10.1063/1.4945405

Google Scholar

[5] Giebler,C.;Wright,J.; Freeborn,S.; Conway,T. high performance PZT based pyro-detectors with D* of 2×109 cmHz1/2/W for presence gas and spectroscopy applications.IRS² Proceedings (2009).

DOI: 10.5162/irs09/i1.1

Google Scholar

[6] XING, Xiuqin.; ZHU, Xijing.; LI, Jing. Structure of Pb(Zr,Ti)O3(PZT) for Power Ultrasonic Transducer. Journal of Wuhan University of Technology-Mater. 33(2018) 884-887. DOI: 10.1007.

DOI: 10.1007/s11595-018-1908-7

Google Scholar

[7] Rohan, Ghosh.; Alkausil, Tamboli.; Vimala, Juliet.Simulation and Analysis of MEMS based Multistep Piezoelectric Actuator International Journal of Pure and Applied Mathematics. 118(2018) 277-281. ISSN: 1314-3395.

Google Scholar

[8] Logothetis, I. ; Matsouka, D. ; Vassiliadis, S. et al.Optimum Operating Conditions for PZT Actuators for Vibrotactile Wearables. Journal of Elec Materi. 47 (2018) 3709–3716. DOI: 10.1007.

DOI: 10.1007/s11664-018-6226-5

Google Scholar

[9] Smith, GL.;Pulskamp,JS. ;Sanchez, LM. ;et al. PZT-Based Piezoelectric MEMS Technology. Am. Ceram. Soc. 95 (2012) 1777-1792. DOI: 10.1111.

Google Scholar

[10] Dongna, S.;Jung-Hyun, P. ; Jyoti, A. ; et al. The design, fabrication and evaluation of a MEMS PZT cantilever with an integrated Si proof mass for vibration energy harvesting. J.Micromech. Microeng. 18(2008) 055017-055042. DOI :10.1088.

DOI: 10.1088/0960-1317/18/5/055017

Google Scholar

[11] Esashi, M.; Tanaka, S. Stacked Integration of MEMS on LSI. Micromachines. 7(2016)137-124 .DOI:10.3390.

DOI: 10.3390/mi7080137

Google Scholar

[12] [12] Wen, Z.; Deng, L.;Zhao, X.;Shang, Z.;Yuan, C.; She, Y. Improving voltage output with PZT beam array for MEMS-based vibration energy harvester: theory and experiment. Microsyst Technol 21(2014) 331–339. DOI 10.1007.

DOI: 10.1007/s00542-013-2052-0

Google Scholar

[13] Xu, Ruichao.; Lei, Anders.; Dahl-Petersen, Christian.; Hansen, K.; Guizzetti, M.; Birkelund, Karen ; Thomsen, Erik Vilain ; Hansen, Ole. Mems-based pzt/pzt bimorph thick film vibration energy harvester. Proceedings of the International Workshops on Micro and Nanotechnology for Power Generation and Energy Conversion Applications. (2011).

DOI: 10.1109/transducers.2011.5969848

Google Scholar

[14] Xu, Y. Ferroelectric Materials and Their Applications; Elsevier Science Publishers B.V. (1991).

Google Scholar

[15] Jaffe, B. Cook, Jr WR, Piezoelectric Ceramics. Academic Press: London, (1971).

Google Scholar

[16] Pandey, SK.; James, AR.; Raman, R.  Structural ferroelectric and optical properties of PZT thin films. Physica B 369 (2005) 135-142. DOI: 10.1016.

DOI: 10.1016/j.physb.2005.08.024

Google Scholar

[17] Haccart, T.; Cattan, E.; Remiens, D. Dielectric, ferroelectric and piezoelectric properties of sputtered PZT thin films on Si substrates: Influence of film thickness and orientation, Semiconductor Physics. Quantum Electronics and Optoelectronics, 5(2002) 78-88.DOI: 10.15407.

DOI: 10.15407/spqeo5.01.078

Google Scholar

[18] Lee, SH.; Ryu, MK.; Kim, JP. et al. Ferroelectric Properties of PZT Thin Films Deposited on ZnO/Si Substrates. Journal of the Korean Physical Society, 42(2003) 1105-1107.DOI :.

Google Scholar

[19] Takayama, R.; Tomita, Y.; Preparation of epitaxial Pb(ZrxTi1−x)O3 thin films and their crystallographic, pyroelectric, and ferroelectric properties. J Appl Phys. 65(1989) 1666-1670. DOI: 10.1063.

DOI: 10.1063/1.342936

Google Scholar

[20] Prisedskii, V.V.; Pogibko, V.M.; Polishchuk, V.S. Production and Properties of Nanostructured Metal-Oxide Lead Zirconate–Titanate Piezoceramics.Powder Metall Met Ceram. 52(2014) 505-513. Doi: 10.1007.

DOI: 10.1007/s11106-014-9553-y

Google Scholar

[21] Yoshikazu, Hishinuma.; Takamichi, Fujii.; Takayuki, Naono.; Takami, Arakawa.; Youming, Li. Recent Progress on Development of Sputtered PZT Film at FUJIFILM. 2015 Joint IEEE International(ISAF) (ISIF) (PFM) 2015.DOI: 10.1109/.

DOI: 10.1109/isaf.2015.7172728

Google Scholar

[22] Minh, D. Nguyen.; Evert P. Houwman.; Matthijn Dekkers.; Guus Rijnders. Strongly Enhanced Piezoelectric Response in Lead Zirconate Titanate Films with Vertically-Aligned Columnar Grains. ACS Appl. Mater. Interfaces, 9(2017) 9849–9861. DOI: 10.1021.

DOI: 10.1021/acsami.6b16470

Google Scholar

[23] Shoghi, A.; Shakeri, A. ; Abdizadeh, H.; Golobostanfard, M. R. Synthesis of Crack-Free PZT Thin Films by Sol-gel Processing on Glass Substrate. Procedia Materials Science (2015) 386-390.

DOI: 10.1016/j.mspro.2015.11.136

Google Scholar

[24] Asya, F. Andreeva.; Anatolii, M. Kasumov. Structure and Some Properties of Pb(Zr,Ti)O 3 Thin Films. Powder Metallurgy and Metal Ceramics, 41(2002) 564-566. doi.org/10.1023/A:1022919916992.

DOI: 10.1023/a:1022919916992

Google Scholar

[25] Mahdi, M., Kadri, M., Morphology and structural properties of nano-PZT thin films deposited on unheated substrate by RF sputtering system. Procedings of the 24th International Conference on Microelectronics (IEEE). 2012; 1-3.

DOI: 10.1109/icm.2012.6471445

Google Scholar

[26] Stojanovic BD, Skorokhod VV, Nikolic M. Advanced Science and Technology of Sintering. Springer-Verlag: New York Inc. (2012).

Google Scholar

[27] Matsuo, Y.; Sasaki, H.; Formation of lead zirconate-lead titanate solid solutions. Journal of The American Ceramic Society. 48(1965) 289-291.

DOI: 10.1111/j.1151-2916.1965.tb14743.x

Google Scholar

[28] S. S. CHANDRATREYA R. M. FULRATH J. A. PASK.

Google Scholar

[29] Reaction Mechanisms in the Formation of PZT Solid Solutions. Journal of The American Ceramic Society, 64 (1981) 422-425.

DOI: 10.1111/j.1151-2916.1981.tb09883.x

Google Scholar

[30] Tsuchiya, K.; Kitagawa, T.;Nakamachi, E. Development of RF magnetron sputtering method to fabricate PZT thin film actuator. Precision Engineering. 27(2003) 258-264.

DOI: 10.1016/S0141-6359(03)00006-0

Google Scholar

[31] Meng, X.;Yang, C.; Fu, W. et al, Preparation and electrical properties of ZnO/PZT films by radio frequency reactive magnetron sputtering. Materials Letters, 83(2012) 179-182. DOI10.1016/j.matlet.2012.06.015.

DOI: 10.1016/j.matlet.2012.06.015

Google Scholar

[32] Mahdi, M.; Kaderi, M. Electrical and Structural Properties of Multioriented thin Film PZT Deposited at Room Temperature by RF-PVD. Applied Mechanics and Materials, 464(2014) 89-93.

DOI: 10.4028/www.scientific.net/AMM.464.89

Google Scholar

[33] Thanh, N.T.K.; Maclean, N.; Mahiddine, S. Mechanisms of Nucleation and Growth of Nanoparticules in Solution. Chem. Rev. 114(2014) 15, 7610-7630.

DOI: 10.1021/cr400544s

Google Scholar