Effect of Pulse Current Electrodeposition on Structural, Mechanical and Corrosion Resistance Properties of Ni- TiO2 Nanocomposite Coatings

Article Preview

Abstract:

Ni-TiO2 nanocomposite coatings were fabricated on mild steel surface by pulsed direct current (PC) electrodeposition. This process was carried out in pulsed current at (1, 10, 50) Hz and a duty cycle (25%, 50%, 75%) respectively, at a minimum current density of 0 & high current density of 4 A/dm2. In this work the properties of nanocomposite films were investigated using scanning electron microscopy (SEM), Vickers microhardness measurements and Tafel polarization tests. The composition of the electrodeposits was analyzed by energy dispersive X-ray analysis (EDX). It was found that the coated surface contained at maximum 16.30 % Ti and 35.48 % O. XRD studies revealed [111] preferred orientation. Hardness increased from 560.4 Hv for Ni-TiO2 (F=10 Hz, DC=75 %) nanocomposite coating to 645.7 Hv for Ni-TiO2 (F=10 Hz, DC=25 %) nanocomposite coating. The corrosion resistance of Ni-TiO2 coatings was evaluated by potentiodynamic polarization studies in 3.5 % NaCl solutions. The Pulsed current offer composite coatings with uniform surface, high microhardness and enhanced corrosion resistance significantly for F=10Hz and DC=25 %.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

292-299

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P.M. Vereecken, I. Shao, P.C. Searson, Particle codeposition in nanocomposite films, J. Electrochem. Soc. 147 (2000) 2572-2575.

DOI: 10.1149/1.1393570

Google Scholar

[2] N.S. Qu, D. Zhu, K.C. Chan, Fabrication of Ni-CeO2 nanocomposite by electrodeposition, Scr. Mater. 54 (2006) 1421-1425.

DOI: 10.1016/j.scriptamat.2005.10.069

Google Scholar

[3] A. Vlaza, S. Varvara, A. Pop, C. Bulea, L.M. Muresan, Electrodeposited Zn-TiO2 nanocomposite coatings and their corrosion behavior, Journal of Applied Electrochemistry 40 (8) (2010) 1519-1927.

DOI: 10.1007/s10800-010-0130-x

Google Scholar

[4] I. Shao, P.M. Vereecken, R.C. Cammarata, P.C. Searson, Kinetics of particle codeposition of nanocomposites, J. Electrochem. Soc. 149 (2002) 610-614.

DOI: 10.1149/1.1514672

Google Scholar

[5] S. Saied, A. Mekkaoui, O. Belahssen, A. Chala, Effect of TiO2 nanoparticles in Ni matrix on mechanical and corrosion resistance properties, Acta Metallurgica Slovaca, Vol. 23, (2017) 37-44.

DOI: 10.12776/ams.v23i1.846

Google Scholar

[6] C. Fei, J. Chuanhai, Influences of Al particles on the microstructure and property of electrodeposited Ni-Al composite coatings, Appl. Surf. Sci. 292 (2014) 620-625.

DOI: 10.1016/j.apsusc.2013.12.021

Google Scholar

[7] Y.S. Dong, P.H. Lin, H.X. Wang, Electroplating preparation of Ni-Al2O3 graded composite coatings using a rotating cathode, Surf. Coat. Technol. 200 (2006) 3633-3636.

DOI: 10.1016/j.surfcoat.2004.11.024

Google Scholar

[8] H.K. Lee, H.Y. Lee, J.M. Jeon, Codeposition of micro- and nano-sized SiC particles in the nickel matrix composite coatings obtained by electroplating, Surf. Coat. Technol. 201 (2007) 4711-4717.

DOI: 10.1016/j.surfcoat.2006.10.004

Google Scholar

[9] N.S. Qu, D. Zhu, K.C. Chan, W.N. Lei, Pulse electrodeposition of Nano crystalline nickel using ultra narrow pulse width and high peak current density, Surf. Coat. Technol. 168 (2003) 123-128.

DOI: 10.1016/s0257-8972(03)00014-8

Google Scholar

[10] T. Song, D.Y. Li, Tribological, mechanical and electrochemical properties of Nano crystalline copper deposits produced by pulse electro-deposition, Nanotechnology 17 (2006) 65-78.

DOI: 10.1088/0957-4484/17/1/012

Google Scholar

[11] T. Borkar, S. Harimkar, Effect of electrodeposition conditions and reinforcement content on microstructure and tribological properties of nickel composite coatings, Surface and Coatings Technology 205 (2011) 4124-4134.

DOI: 10.1016/j.surfcoat.2011.02.057

Google Scholar

[12] K.R. Sriraman, S. Ganesh Sundara Raman, S.K. Seshadri, Corrosion behavior of electrodeposited nanocrystalline Ni-W and Ni-Fe-W alloys, Materials Science and Engineering A 460-461 (2007) 39-45.

DOI: 10.1016/j.msea.2007.02.055

Google Scholar

[13] M.D. Obradovic, G.Z. Bosnjakov, R.M. Stevanovic, M.D. Maksimovic, A.R. Despic, Pulse and direct current plating of Ni-W alloys from ammonia-citrate electrolyte, Surface and Coatings Technology 200 (2006) 4201-4207.

DOI: 10.1016/j.surfcoat.2004.12.013

Google Scholar

[14] L.M. Chang, M.Z. An, S.Y. Shi, Microstructure and characterization of Ni-Co/Al2O3 composite coating by pulse reversal electrodeposit, Materials Chemistry and Physics 100 (2006) 395-399.

DOI: 10.1016/j.matchemphys.2006.01.035

Google Scholar

[15] L.M. Chang, H.F. Guo, M.Z. An, Electrodeposition of Ni-Co/Al2O3 composite coating by pulse reverse method under ultrasonic condition, Materials Letters 62 (2008) 3313-3315.

DOI: 10.1016/j.matlet.2008.02.055

Google Scholar

[16] B. Ranjith, G. Paruthimal Kalaignan, Ni-Co/TiO2 nanocomposite coating prepared by pulse and pulse reversal methods using acetate bath, Applied Surface Science 257 (2010) 42-47.

DOI: 10.1016/j.apsusc.2010.06.029

Google Scholar

[17] M. Momenzadeh, S. Sanjabi, The effect of TiO2 nanoparticle co-deposition on microstructure and corrosion resistance of electroless Ni-P coating, Materials and Corrosion 62 (2011) 1-6.

DOI: 10.1002/maco.201005985

Google Scholar

[18] M. Aliofkhazraei, Sh. Ahangarani, A. Sabour Rouhaghdam, Effect of the duty cycle of pulsed current on nanocomposite layers formed by pulsed electrodeposition, Rare Metals 29 (2) (2010) 209-213.

DOI: 10.1007/s12598-010-0036-0

Google Scholar

[19] P.I. Nemes, M. Lekka, L. Fdrizzi, L.M Mursan, Influence of the electrodeposition current regime on the corrosion resistance of Zn-CeO2 nanocomposite coatings, Elsevier, 252 (2014) 102-107.

DOI: 10.1016/j.surfcoat.2014.04.051

Google Scholar

[20] Power Diffraction File Alphabetical Index, JCPDS-ICDD International Center for Diffraction Data, Swarthmore, USA, 1988, File 21-1272 for anatase, File 21-1276 for rutile.

Google Scholar

[21] S. Kyu Kim, H. Jae Yoo, Formation of bilayer Ni-SiC composite coating by electrodeposition, Surf. Coat. Technol. 108-109 (1998) 564-569.

DOI: 10.1016/s0257-8972(98)00589-1

Google Scholar

[22] K.H.W. Seah, M. Krishna, V.T. Vijayalakshmi, J. Uchil, Corrosion behavior of garnet particulate reinforced LM13 Al alloy MMCs, Corrosion Science 44 (2002) 917-925.

DOI: 10.1016/s0010-938x(01)00099-3

Google Scholar

[23] M.E. Bahrololoom, R. Sani, The influence of pulse plating parameters on the hardness and wear resistance of nickel-alumina composite coatings, Surf. Coat. Technol. 192 (2005) 154-163.

DOI: 10.1016/j.surfcoat.2004.09.023

Google Scholar