Microstructural and Mechanical Properties of Welding and Thermal Spraying Coatings on Ductile Cast Iron

Article Preview

Abstract:

The subject of this work is to evaluate the influence and adhesion degree of different coating layers deposited on a ductile cast iron substrate by two different methods, thermal spraying and welding with and without use of an interlayer. Microstructures of different zones and interfaces of coated specimens are investigated using optical microscope and scanning electron microscope SEM. Also, the mechanical behavior was evaluated by tensile test. It is found that when stainless steel thermal spraying coating onto the ductile cast iron substrate, the use of the nickel-based interlayer Ni allowed us to mitigate the disadvantages of cracking at the interface. This is due to the mechanical effect of nickel plasticity. In the case of coating by welding, the use of nickel-based buttering ENi-CI allowed us to reduce the diffusion of graphite to stainless steel, resulting in a reduction in the formation of harder alloy carbides. Finally, the mechanicals tests in particular the tensile test shows that the coating by welding is effective but causes a structural hardening; on the other hand the coating realized by thermal spraying does not really present sufficient adhesion.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

300-311

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. LE BRETON, Manuel pratique du fondeur de fonte, DUNOD, Paris, (1966).

Google Scholar

[2] C. Fragassa, N. Radovic, A. Pavlovic, G. Minak, Comparison of mechanical properties in compacted and spheroidal graphite irons, Tribol. Ind. 38 (2016) 49-59.

Google Scholar

[3] C.H. Chen, C.J. Alstetter, J.M. Rigsbee, Laser processing of cast iron for enhanced erosion resistance, Metall. Trans A. 15 (1984) 719-728.

DOI: 10.1007/bf02644203

Google Scholar

[4] A. Gulzar, J.I. Akhter, M. Ahmad, G. Ali, M. Mahmood, M. Ajmal, Microstructure evolution during surface alloying of ductile iron and austempered ductile iron by electron beam melting, Appl. Surf. Sci. 255 (2009) 8527-8532.

DOI: 10.1016/j.apsusc.2009.06.011

Google Scholar

[5] K.Y. Benyounis, O.M.A. Fakron, J.H. Abboud, A.G. Olabi, M.J.S. Hashmi, Surface melting of nodular cast iron by Nd–YAG laser and TIG, J. Mater. Process. Technol. 170 (2005) 127-132.

DOI: 10.1016/j.jmatprotec.2005.04.108

Google Scholar

[6] J.R. Davis, Cast Irons: ASM Specialty Handbook, 2nd ed.; ASM International: Materials Park, OH, USA, 1996, pp.393-460.

Google Scholar

[7] R. Winiczenko, R. Salat, M. Awtoniuk, Estimation of tensile strength of ductile iron friction welded joints using hybrid intelligent methods, Trans. Nonferrous. Met. Soc. 23 (2013) 385-391.

DOI: 10.1016/s1003-6326(13)62474-7

Google Scholar

[8] R. Konecná, G. Nicoletto, L. Bubenko, S. Fintová, A comparative study of the fatigue behavior of two heat-treated nodular cast irons, Eng. Fract. Mech. 108 (2013) 251-262.

DOI: 10.1016/j.engfracmech.2013.04.017

Google Scholar

[9] C. Fragassa, Material selection in machine design: The change of cast iron for improving the high-quality in woodworking, J. Mech. Eng. Sci. 231 (2017) 18-30.

Google Scholar

[10] H. Zhao, J. Li, Z. Zheng, A. Wang, D. Zeng, Y. Miao,The microstructures and tribological properties of composite coatings formed via PTA surface alloying of copper on nodular cast iron, Surf. Coat. Technol. 286 (2016) 303-312.

DOI: 10.1016/j.surfcoat.2015.12.037

Google Scholar

[11] J. BARRALIS, G. MAEDER, Précis de métallurgie, élaboration, structures, propriétés et normalisation, Five ed.; NATHAN, Paris, (1990).

Google Scholar

[12] S. Usmani, K.N. Tandon, Evaluation of Thermally Sprayed Coatings under Reciprocating Lubricated Wear Conditions, J. Therm. Spray. Techno. 1 (1992) 249-255.

DOI: 10.1007/bf02646780

Google Scholar

[13] E.U. Petitbon, J.F. Wallace, Aluminum alloyed gray iron properties at room and elevated temperature, AFS. Cast. Met. Res. J. 9 (1973) 127-134.

Google Scholar

[14] J.A. Yaker, L.E. Barnes, W.C. Leslie, E.U. Petitbon, Microstructure and strength of Al-containing gray and nodular irons in the range 1200–1800 F (650–980 °C), Trans. Am. Foundrymen. Soc. 84 (1976) 305-320.

Google Scholar

[15] R.P. Walson, Aluminum-alloyed cast iron, properties and design, Trans. Am. Foundrymen. Soc. 85 (1977) 51-58.

Google Scholar

[16] R.K. Bhatnagar, G. Gupta, A review on weldability of cast iron, Int. J. Eng. Sci. Res. 7 (2016) 126-131.

Google Scholar

[17] R. LE GOUIC, Précis de soudage brassage et technique connexes, éditions Eyrolles, Paris, (1978).

Google Scholar

[18] M. Pouranvari, On the weldability of grey cast iron using nickel based filler metal, Mater. Des. 31 (2010) 3253-3258.

DOI: 10.1016/j.matdes.2010.02.034

Google Scholar

[19] M. Pascual, C. Ferrer y, E. Rayón, Weldability of spheroidal graphite ductile cast iron using Ni / Ni- Fe electrodes, Revista. Metallurgia. 45 (2009) 334-338.

DOI: 10.3989/revmetalm.0814

Google Scholar

[20] R.A Jeshvaghani, E. Harati, M. Shamanian, Effects of surface alloying on microstructure and wear behavior of ductile iron surface-modified with a nickel-based alloy using shielded metal arc welding, Mater. Des. 32 (2011) 1531-1536.

DOI: 10.1016/j.matdes.2010.10.006

Google Scholar

[21] X. Qi, S. Zhu, H. Ding, Z. Zhu, Z. Han, Microstructure and wear behaviors of WC–12%Co coating deposited on ductile iron by electric contact surface strengthening, Appl. Surf. Sci. 282 (2013) 672-679.

DOI: 10.1016/j.apsusc.2013.06.032

Google Scholar

[22] M. Ksiazek, K. Boron, M. Radecka, M. Richert, & A. Tchorz, Mechanical and Tribological Properties of HVOF-Sprayed (Cr3C2-NiCr+Ni) Composite Coating on Ductile Cast Iron, J. Mater. Eng. Perform. 25 (2016) 3185-3193.

DOI: 10.1007/s11665-016-2226-x

Google Scholar

[23] Y.‏ Adda, J.‏ Philiber, La diffusion dans les solides tome II, DUNOD, Saclay, Paris, (1966).

Google Scholar

[24] R.C. Voigt, C.R. Loper, A study of heat-affected zone structures in ductile cast iron, Weld. J. 42 (1983) 82-88.

Google Scholar

[25] E.R.I. Mahmoud, H.F. El-Labban, Microstructure and Wear Behavior of TiC Coating Deposited on Spheroidized Graphite Cast Iron Using Laser Surfacing, Eng. Techno. Appl. Sci. Res. 4 (2014) 696-701.

DOI: 10.48084/etasr.483

Google Scholar

[26] S. Kim, S. Lee, K. Han, S. Hong, C. Lee, Cracking Behavior in a Dissimilar Weld between High Silicon Nodular Cast Iron and Ferritic Stainless Steel, Met. Mater Int. 16 (2010) 483-488.

DOI: 10.1007/s12540-010-0621-7

Google Scholar

[27] C.D. Lundin, W. Liu, G. Zhou, C.Y.P. Qiao, Unmixed Zone in Arc Welds: Significance on Corrosion Resistance of High Molybdenum Stainless Steels, Welding Research Council Bulletin 428, New York, (1998).

Google Scholar

[28] L. Cárcel-Carrasco, M. Pascual, M. Pérez-Puig, F. Segovia, Comparative study of TIG and SMAW root welding passes on ductile iron cast weldability, Metalurgija. 56 (2017) 91-93.

Google Scholar