Thermo-Kinetic Study of Adsorption of Methylene Blue in Aqueous Solutions Using Algerian Illite Natural and Activated Mineral Clay

Article Preview

Abstract:

In this study, a local mineral clay was used as an adsorbent for the elimination of a cationic dye: methylene blue (MB), in an aqueous solution by adsorption technique. Early on, we performed mineralogical and textural analyses of a clay sample using various techniques, namely X-ray diffraction, Brunauer-Emmett-Teller analysis and Fourier-transform infrared spectroscopy. The experimental results showed that this adsorbent is a mesoporous and non-swelling clay with illite and kaolinite as the major components with a specific area of about 110m2/g. The study of MB adsorption on the clay was carried out by optimizing the conditions of adsorption, notably the initial concentration of pollutant C0, the mass of clay m, the contact time t, the potential of hydrogen of the solution pH and the temperature T. Experimental results have shown that the equilibrium data are well adjusted by a Langmuir isotherm equation. Thermodynamic parameters such as the changes in Gibbs free energy, enthalpy, and entropy were determined from batch experiments. Results revealed that the adsorption of MB onto illitic clay was endothermic and spontaneous process. Kinetic modeling was also carried out. Experimental data adjusted the kinetic model of pseudo-second order with two stages of intraparticle diffusion.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

348-363

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Bakker, M. Ritts, Global environmental change, Smart Earth: A meta-review and implications for environmental governance, 52 (2018) 201-211.

DOI: 10.1016/j.gloenvcha.2018.07.011

Google Scholar

[2] S. Mnasri-Ghnimi, N. Frini-Srasra, Applied Clay Science, Removal of heavy metals from aqueous solutions by adsorption using single and mixed pillared clays, 179 (2019) 105151.

DOI: 10.1016/j.clay.2019.105151

Google Scholar

[3] S.M. Ghnimi, N. Frini-Srasra, Applied Clay Science, A comparison of single and mixed pillared clays for zinc and chromium cations removal, 158 (2018) 150-157.

DOI: 10.1016/j.clay.2018.03.019

Google Scholar

[4] M. Kummu, H. De Moel, M. Porkka, S. Siebert, O. Varis, P.J. Ward, Science of the total environment, Lost food, wasted resources: Global food supply chain losses and their impacts on freshwater, cropland, and fertiliser use, 438 (2012) 477-489.

DOI: 10.1016/j.scitotenv.2012.08.092

Google Scholar

[5] M. Berradi, R. Hsissou, M. Khudhair, M. Assouag, O. Cherkaoui, A. El Bachiri, A. El Harfi, Heliyon, Textile finishing dyes and their impact on aquatic environs, 5 (2019) e02711.

DOI: 10.1016/j.heliyon.2019.e02711

Google Scholar

[6] G. Crini, Bioresource technology, Non-conventional low-cost adsorbents for dye removal: a review, 97 (2006) 1061-1085.

DOI: 10.1016/j.biortech.2005.05.001

Google Scholar

[7] T. Robinson, G. McMullan, R. Marchant, P. Nigam, Bioresource technology, Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative, 77 (2001) 247-255.

DOI: 10.1016/s0960-8524(00)00080-8

Google Scholar

[8] C.A. Martínez-Huitle, E. Brillas, Applied Catalysis B: Environmental, Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review, 87 (2009) 105-145.

DOI: 10.1016/j.apcatb.2008.09.017

Google Scholar

[9] S. Azha, A. Ahmad, S. Ismail, Desalination and Water Treatment, Thin coated adsorbent layer: characteristics and performance study, 55 (2015) 956-969.

DOI: 10.1080/19443994.2014.922502

Google Scholar

[10] D. Atia, A.A. Bebba, L. Haddad, A. Zobeidi, Elimination Of Organic Pollutants From Urban Wastewater By Illite-Kaolinite Local Clay From South-East Of Algeria, Ciencia e Tecnica Vitinicola, 33 (2018) 17-28.

DOI: 10.5958/0974-4150.2020.00018.8

Google Scholar

[11] B. Zohra, K. Aicha, S. Fatima, B. Nourredine, D. Zoubir, Chemical Engineering Journal, Adsorption of Direct Red 2 on bentonite modified by cetyltrimethylammonium bromide, 136 (2008) 295-305.

DOI: 10.1016/j.cej.2007.03.086

Google Scholar

[12] M. Doğan, M. Alkan, Ö. Demirbaş, Y. Özdemir, C. Özmetin, Chemical Engineering Journal, Adsorption kinetics of maxilon blue GRL onto sepiolite from aqueous solutions, 124 (2006) 89-101.

DOI: 10.1016/j.cej.2006.08.016

Google Scholar

[13] Z. Bouberka, A. Khenifi, N. Benderdouche, Z. Derriche, Journal of hazardous materials, Removal of Supranol Yellow 4GL by adsorption onto Cr-intercalated montmorillonite, 133 (2006) 154-161.

DOI: 10.1016/j.jhazmat.2005.10.003

Google Scholar

[14] M.F.R. Pereira, S.F. Soares, J.J. Órfão, J.L. Figueiredo, Carbon, Adsorption of dyes on activated carbons: influence of surface chemical groups, 41 (2003) 811-821.

DOI: 10.1016/s0008-6223(02)00406-2

Google Scholar

[15] S. Altenor, B. Carene, E. Emmanuel, J. Lambert, J.-J. Ehrhardt, S. Gaspard, Journal of hazardous materials, Adsorption studies of methylene blue and phenol onto vetiver roots activated carbon prepared by chemical activation, 165 (2009) 1029-1039.

DOI: 10.1016/j.jhazmat.2008.10.133

Google Scholar

[16] Y. Zaker, M. Hossain, T. Islam, Research Journal of Chemical Sciences ISSN, Adsorption kinetics of methylene blue onto clay fractionated from Bijoypur soil, Bangladesh, 2231 (2013) 606X.

Google Scholar

[17] I. Tan, A. Ahmad, B. Hameed, Desalination, Adsorption of basic dye using activated carbon prepared from oil palm shell: batch and fixed bed studies, 225 (2008) 13-28.

DOI: 10.1016/j.desal.2007.07.005

Google Scholar

[18] A. Badruddoza, G.S.S. Hazel, K. Hidajat, M. Uddin, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Synthesis of carboxymethyl-β-cyclodextrin conjugated magnetic nano-adsorbent for removal of methylene blue, 367 (2010) 85-95.

DOI: 10.1016/j.colsurfa.2010.06.018

Google Scholar

[19] S. Tahir, N. Rauf, Chemosphere, Removal of a cationic dye from aqueous solutions by adsorption onto bentonite clay, 63 (2006) 1842-1848.

DOI: 10.1016/j.chemosphere.2005.10.033

Google Scholar

[20] C.-H. Weng, Y.-F. Pan, Journal of hazardous materials, Adsorption of a cationic dye (methylene blue) onto spent activated clay, 144 (2007) 355-362.

DOI: 10.1016/j.jhazmat.2006.09.097

Google Scholar

[21] H. Yuh-Shan, Scientometrics, Citation review of Lagergren kinetic rate equation on adsorption reactions, 59 (2004) 171-177.

DOI: 10.1023/b:scie.0000013305.99473.cf

Google Scholar

[22] L. Wang, A. Wang, Journal of hazardous materials, Adsorption properties of Congo Red from aqueous solution onto surfactant-modified montmorillonite, 160 (2008) 173-180.

DOI: 10.1016/j.jhazmat.2008.02.104

Google Scholar

[23] A.S. Özcan, A. Özcan, Journal of colloid and interface science, Adsorption of acid dyes from aqueous solutions onto acid-activated bentonite, 276 (2004) 39-46.

DOI: 10.1016/j.jcis.2004.03.043

Google Scholar

[24] V. Vimonses, S. Lei, B. Jin, C.W. Chow, C. Saint, Chemical Engineering Journal, Kinetic study and equilibrium isotherm analysis of Congo Red adsorption by clay materials, 148 (2009) 354-364.

DOI: 10.1016/j.cej.2008.09.009

Google Scholar

[25] H.B. Senturk, D. Ozdes, C. Duran, Desalination, Biosorption of Rhodamine 6G from aqueous solutions onto almond shell (Prunus dulcis) as a low cost biosorbent, 252 (2010) 81-87.

DOI: 10.1016/j.desal.2009.10.021

Google Scholar

[26] R.K. Gautam, M.C. Chattopadhyaya, Nanomaterials for wastewater remediation, Butterworth-Heinemann, (2016).

Google Scholar

[27] A.M. Din, B.H. Hameed, Journal of Applied Sciences in Environmental Sanitation, Adsorption of methyl violet dye on acid modified activated carbon: isotherms and thermodynamics, 5 (2010) 161-170.

Google Scholar

[28] V.K. Gupta, A. Mittal, V. Gajbe, Journal of colloid and interface science, Adsorption and desorption studies of a water soluble dye, Quinoline Yellow, using waste materials, 284 (2005) 89-98.

DOI: 10.1016/j.jcis.2004.09.055

Google Scholar

[29] A. Khenifi, Z. Bouberka, F. Sekrane, M. Kameche, Z. Derriche, Adsorption, Adsorption study of an industrial dye by an organic clay, 13 (2007) 149-158.

DOI: 10.1007/s10450-007-9016-6

Google Scholar

[30] I. Chaari, E. Fakhfakh, S. Chakroun, J. Bouzid, N. Boujelben, M. Feki, F. Rocha, F. Jamoussi, Journal of hazardous materials, Lead removal from aqueous solutions by a Tunisian smectitic clay, 156 (2008) 545-551.

DOI: 10.1016/j.jhazmat.2007.12.080

Google Scholar

[31] W.-T. Tsai, H.-C. Hsu, T.-Y. Su, K.-Y. Lin, C.-M. Lin, T.-H. Dai, Journal of hazardous materials, The adsorption of cationic dye from aqueous solution onto acid-activated andesite, 147 (2007) 1056-1062.

DOI: 10.1016/j.jhazmat.2007.01.141

Google Scholar

[32] C.-H. Weng, Y. Sharma, S.-H. Chu, Journal of hazardous materials, Adsorption of Cr (VI) from aqueous solutions by spent activated clay, 155 (2008) 65-75.

DOI: 10.1016/j.jhazmat.2007.11.029

Google Scholar

[33] A.K.K. Mayeko, P.N. Vesituluta, J.N. Di Phanzu, D.M.W. Muanda, G.E. Bakambo, B.I. Lopaka, J.M. Mulangala, International Journal of Biological and Chemical Sciences, Adsorption de la quinine bichlorhydrate sur un charbon actif peu coûteux à base de la Bagasse de canne à sucre imprégnée de l'acide phosphorique, 6 (2012) 1337-1359.

DOI: 10.4314/ijbcs.v6i3.36

Google Scholar

[34] C. Almeida, N. Debacher, A. Downs, L. Cottet, C. Mello, Sci, (2009).

Google Scholar

[35] L. Zhang, H. Zhang, W. Guo, Y. Tian, Applied Clay Science, Removal of malachite green and crystal violet cationic dyes from aqueous solution using activated sintering process red mud, 93 (2014) 85-93.

DOI: 10.1016/j.clay.2014.03.004

Google Scholar

[36] Z. Huang, Y. Li, W. Chen, J. Shi, N. Zhang, X. Wang, Z. Li, L. Gao, Y. Zhang, Materials Chemistry and Physics, Modified bentonite adsorption of organic pollutants of dye wastewater, 202 (2017) 266-276.

DOI: 10.1016/j.matchemphys.2017.09.028

Google Scholar

[37] M. Doğan, Y. Özdemir, M. Alkan, Dyes and Pigments, Adsorption kinetics and mechanism of cationic methyl violet and methylene blue dyes onto sepiolite, 75 (2007) 701-713.

DOI: 10.1016/j.dyepig.2006.07.023

Google Scholar

[38] A. Gürses, Ç. Doğar, M. Yalçın, M. Açıkyıldız, R. Bayrak, S. Karaca, Journal of hazardous materials, The adsorption kinetics of the cationic dye, methylene blue, onto clay, 131 (2006) 217-228.

DOI: 10.1016/j.jhazmat.2005.09.036

Google Scholar

[39] G. Rytwo, R. Huterer-Harari, S. Dultz, Y. Gonen, Journal of thermal analysis and calorimetry, Adsorption of fast green and erythrosin-B to montmorillonite modified with crystal violet, 84 (2006) 225-231.

DOI: 10.1007/s10973-005-7187-5

Google Scholar

[40] G. Rytwo, E. Ruiz-Hitzky, Journal of thermal analysis and calorimetry, Enthalpies of adsorption of methylene blue and crystal violet to montmorillonite, 71 (2003) 751-759.

Google Scholar

[41] M. Kara, H. Yuzer, E. Sabah, M. Celik, Water research, Adsorption of cobalt from aqueous solutions onto sepiolite, 37 (2003) 224-232.

DOI: 10.1016/s0043-1354(02)00265-8

Google Scholar

[42] L. Lian, L. Guo, C. Guo, Journal of hazardous materials, Adsorption of Congo red from aqueous solutions onto Ca-bentonite, 161 (2009) 126-131.

DOI: 10.1016/j.jhazmat.2008.03.063

Google Scholar

[43] R. Mudzielwana, M.W. Gitari, P. Ndungu, Frontiers in chemistry, Enhanced As (III) and As (V) adsorption from aqueous solution by a clay based hybrid sorbent, 7 (2019).

DOI: 10.3389/fchem.2019.00913

Google Scholar

[44] C. Almeida, N. Debacher, A. Downs, L. Cottet, C. Mello, Journal of colloid and interface science, Removal of methylene blue from colored effluents by adsorption on montmorillonite clay, 332 (2009) 46-53.

DOI: 10.1016/j.jcis.2008.12.012

Google Scholar

[45] S. Hong, C. Wen, J. He, F. Gan, Y.-S. Ho, Journal of hazardous materials, Adsorption thermodynamics of methylene blue onto bentonite, 167 (2009) 630-633.

DOI: 10.1016/j.jhazmat.2009.01.014

Google Scholar

[46] A. Rostami, M.A. Anbaz, H.R.E. Gahrooei, M. Arabloo, A. Bahadori, Egyptian Journal of Petroleum, Accurate estimation of CO2 adsorption on activated carbon with multi-layer feed-forward neural network (MLFNN) algorithm, 27 (2018) 65-73.

DOI: 10.1016/j.ejpe.2017.01.003

Google Scholar