[1]
K. Bakker, M. Ritts, Global environmental change, Smart Earth: A meta-review and implications for environmental governance, 52 (2018) 201-211.
DOI: 10.1016/j.gloenvcha.2018.07.011
Google Scholar
[2]
S. Mnasri-Ghnimi, N. Frini-Srasra, Applied Clay Science, Removal of heavy metals from aqueous solutions by adsorption using single and mixed pillared clays, 179 (2019) 105151.
DOI: 10.1016/j.clay.2019.105151
Google Scholar
[3]
S.M. Ghnimi, N. Frini-Srasra, Applied Clay Science, A comparison of single and mixed pillared clays for zinc and chromium cations removal, 158 (2018) 150-157.
DOI: 10.1016/j.clay.2018.03.019
Google Scholar
[4]
M. Kummu, H. De Moel, M. Porkka, S. Siebert, O. Varis, P.J. Ward, Science of the total environment, Lost food, wasted resources: Global food supply chain losses and their impacts on freshwater, cropland, and fertiliser use, 438 (2012) 477-489.
DOI: 10.1016/j.scitotenv.2012.08.092
Google Scholar
[5]
M. Berradi, R. Hsissou, M. Khudhair, M. Assouag, O. Cherkaoui, A. El Bachiri, A. El Harfi, Heliyon, Textile finishing dyes and their impact on aquatic environs, 5 (2019) e02711.
DOI: 10.1016/j.heliyon.2019.e02711
Google Scholar
[6]
G. Crini, Bioresource technology, Non-conventional low-cost adsorbents for dye removal: a review, 97 (2006) 1061-1085.
DOI: 10.1016/j.biortech.2005.05.001
Google Scholar
[7]
T. Robinson, G. McMullan, R. Marchant, P. Nigam, Bioresource technology, Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative, 77 (2001) 247-255.
DOI: 10.1016/s0960-8524(00)00080-8
Google Scholar
[8]
C.A. Martínez-Huitle, E. Brillas, Applied Catalysis B: Environmental, Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review, 87 (2009) 105-145.
DOI: 10.1016/j.apcatb.2008.09.017
Google Scholar
[9]
S. Azha, A. Ahmad, S. Ismail, Desalination and Water Treatment, Thin coated adsorbent layer: characteristics and performance study, 55 (2015) 956-969.
DOI: 10.1080/19443994.2014.922502
Google Scholar
[10]
D. Atia, A.A. Bebba, L. Haddad, A. Zobeidi, Elimination Of Organic Pollutants From Urban Wastewater By Illite-Kaolinite Local Clay From South-East Of Algeria, Ciencia e Tecnica Vitinicola, 33 (2018) 17-28.
DOI: 10.5958/0974-4150.2020.00018.8
Google Scholar
[11]
B. Zohra, K. Aicha, S. Fatima, B. Nourredine, D. Zoubir, Chemical Engineering Journal, Adsorption of Direct Red 2 on bentonite modified by cetyltrimethylammonium bromide, 136 (2008) 295-305.
DOI: 10.1016/j.cej.2007.03.086
Google Scholar
[12]
M. Doğan, M. Alkan, Ö. Demirbaş, Y. Özdemir, C. Özmetin, Chemical Engineering Journal, Adsorption kinetics of maxilon blue GRL onto sepiolite from aqueous solutions, 124 (2006) 89-101.
DOI: 10.1016/j.cej.2006.08.016
Google Scholar
[13]
Z. Bouberka, A. Khenifi, N. Benderdouche, Z. Derriche, Journal of hazardous materials, Removal of Supranol Yellow 4GL by adsorption onto Cr-intercalated montmorillonite, 133 (2006) 154-161.
DOI: 10.1016/j.jhazmat.2005.10.003
Google Scholar
[14]
M.F.R. Pereira, S.F. Soares, J.J. Órfão, J.L. Figueiredo, Carbon, Adsorption of dyes on activated carbons: influence of surface chemical groups, 41 (2003) 811-821.
DOI: 10.1016/s0008-6223(02)00406-2
Google Scholar
[15]
S. Altenor, B. Carene, E. Emmanuel, J. Lambert, J.-J. Ehrhardt, S. Gaspard, Journal of hazardous materials, Adsorption studies of methylene blue and phenol onto vetiver roots activated carbon prepared by chemical activation, 165 (2009) 1029-1039.
DOI: 10.1016/j.jhazmat.2008.10.133
Google Scholar
[16]
Y. Zaker, M. Hossain, T. Islam, Research Journal of Chemical Sciences ISSN, Adsorption kinetics of methylene blue onto clay fractionated from Bijoypur soil, Bangladesh, 2231 (2013) 606X.
Google Scholar
[17]
I. Tan, A. Ahmad, B. Hameed, Desalination, Adsorption of basic dye using activated carbon prepared from oil palm shell: batch and fixed bed studies, 225 (2008) 13-28.
DOI: 10.1016/j.desal.2007.07.005
Google Scholar
[18]
A. Badruddoza, G.S.S. Hazel, K. Hidajat, M. Uddin, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Synthesis of carboxymethyl-β-cyclodextrin conjugated magnetic nano-adsorbent for removal of methylene blue, 367 (2010) 85-95.
DOI: 10.1016/j.colsurfa.2010.06.018
Google Scholar
[19]
S. Tahir, N. Rauf, Chemosphere, Removal of a cationic dye from aqueous solutions by adsorption onto bentonite clay, 63 (2006) 1842-1848.
DOI: 10.1016/j.chemosphere.2005.10.033
Google Scholar
[20]
C.-H. Weng, Y.-F. Pan, Journal of hazardous materials, Adsorption of a cationic dye (methylene blue) onto spent activated clay, 144 (2007) 355-362.
DOI: 10.1016/j.jhazmat.2006.09.097
Google Scholar
[21]
H. Yuh-Shan, Scientometrics, Citation review of Lagergren kinetic rate equation on adsorption reactions, 59 (2004) 171-177.
DOI: 10.1023/b:scie.0000013305.99473.cf
Google Scholar
[22]
L. Wang, A. Wang, Journal of hazardous materials, Adsorption properties of Congo Red from aqueous solution onto surfactant-modified montmorillonite, 160 (2008) 173-180.
DOI: 10.1016/j.jhazmat.2008.02.104
Google Scholar
[23]
A.S. Özcan, A. Özcan, Journal of colloid and interface science, Adsorption of acid dyes from aqueous solutions onto acid-activated bentonite, 276 (2004) 39-46.
DOI: 10.1016/j.jcis.2004.03.043
Google Scholar
[24]
V. Vimonses, S. Lei, B. Jin, C.W. Chow, C. Saint, Chemical Engineering Journal, Kinetic study and equilibrium isotherm analysis of Congo Red adsorption by clay materials, 148 (2009) 354-364.
DOI: 10.1016/j.cej.2008.09.009
Google Scholar
[25]
H.B. Senturk, D. Ozdes, C. Duran, Desalination, Biosorption of Rhodamine 6G from aqueous solutions onto almond shell (Prunus dulcis) as a low cost biosorbent, 252 (2010) 81-87.
DOI: 10.1016/j.desal.2009.10.021
Google Scholar
[26]
R.K. Gautam, M.C. Chattopadhyaya, Nanomaterials for wastewater remediation, Butterworth-Heinemann, (2016).
Google Scholar
[27]
A.M. Din, B.H. Hameed, Journal of Applied Sciences in Environmental Sanitation, Adsorption of methyl violet dye on acid modified activated carbon: isotherms and thermodynamics, 5 (2010) 161-170.
Google Scholar
[28]
V.K. Gupta, A. Mittal, V. Gajbe, Journal of colloid and interface science, Adsorption and desorption studies of a water soluble dye, Quinoline Yellow, using waste materials, 284 (2005) 89-98.
DOI: 10.1016/j.jcis.2004.09.055
Google Scholar
[29]
A. Khenifi, Z. Bouberka, F. Sekrane, M. Kameche, Z. Derriche, Adsorption, Adsorption study of an industrial dye by an organic clay, 13 (2007) 149-158.
DOI: 10.1007/s10450-007-9016-6
Google Scholar
[30]
I. Chaari, E. Fakhfakh, S. Chakroun, J. Bouzid, N. Boujelben, M. Feki, F. Rocha, F. Jamoussi, Journal of hazardous materials, Lead removal from aqueous solutions by a Tunisian smectitic clay, 156 (2008) 545-551.
DOI: 10.1016/j.jhazmat.2007.12.080
Google Scholar
[31]
W.-T. Tsai, H.-C. Hsu, T.-Y. Su, K.-Y. Lin, C.-M. Lin, T.-H. Dai, Journal of hazardous materials, The adsorption of cationic dye from aqueous solution onto acid-activated andesite, 147 (2007) 1056-1062.
DOI: 10.1016/j.jhazmat.2007.01.141
Google Scholar
[32]
C.-H. Weng, Y. Sharma, S.-H. Chu, Journal of hazardous materials, Adsorption of Cr (VI) from aqueous solutions by spent activated clay, 155 (2008) 65-75.
DOI: 10.1016/j.jhazmat.2007.11.029
Google Scholar
[33]
A.K.K. Mayeko, P.N. Vesituluta, J.N. Di Phanzu, D.M.W. Muanda, G.E. Bakambo, B.I. Lopaka, J.M. Mulangala, International Journal of Biological and Chemical Sciences, Adsorption de la quinine bichlorhydrate sur un charbon actif peu coûteux à base de la Bagasse de canne à sucre imprégnée de l'acide phosphorique, 6 (2012) 1337-1359.
DOI: 10.4314/ijbcs.v6i3.36
Google Scholar
[34]
C. Almeida, N. Debacher, A. Downs, L. Cottet, C. Mello, Sci, (2009).
Google Scholar
[35]
L. Zhang, H. Zhang, W. Guo, Y. Tian, Applied Clay Science, Removal of malachite green and crystal violet cationic dyes from aqueous solution using activated sintering process red mud, 93 (2014) 85-93.
DOI: 10.1016/j.clay.2014.03.004
Google Scholar
[36]
Z. Huang, Y. Li, W. Chen, J. Shi, N. Zhang, X. Wang, Z. Li, L. Gao, Y. Zhang, Materials Chemistry and Physics, Modified bentonite adsorption of organic pollutants of dye wastewater, 202 (2017) 266-276.
DOI: 10.1016/j.matchemphys.2017.09.028
Google Scholar
[37]
M. Doğan, Y. Özdemir, M. Alkan, Dyes and Pigments, Adsorption kinetics and mechanism of cationic methyl violet and methylene blue dyes onto sepiolite, 75 (2007) 701-713.
DOI: 10.1016/j.dyepig.2006.07.023
Google Scholar
[38]
A. Gürses, Ç. Doğar, M. Yalçın, M. Açıkyıldız, R. Bayrak, S. Karaca, Journal of hazardous materials, The adsorption kinetics of the cationic dye, methylene blue, onto clay, 131 (2006) 217-228.
DOI: 10.1016/j.jhazmat.2005.09.036
Google Scholar
[39]
G. Rytwo, R. Huterer-Harari, S. Dultz, Y. Gonen, Journal of thermal analysis and calorimetry, Adsorption of fast green and erythrosin-B to montmorillonite modified with crystal violet, 84 (2006) 225-231.
DOI: 10.1007/s10973-005-7187-5
Google Scholar
[40]
G. Rytwo, E. Ruiz-Hitzky, Journal of thermal analysis and calorimetry, Enthalpies of adsorption of methylene blue and crystal violet to montmorillonite, 71 (2003) 751-759.
Google Scholar
[41]
M. Kara, H. Yuzer, E. Sabah, M. Celik, Water research, Adsorption of cobalt from aqueous solutions onto sepiolite, 37 (2003) 224-232.
DOI: 10.1016/s0043-1354(02)00265-8
Google Scholar
[42]
L. Lian, L. Guo, C. Guo, Journal of hazardous materials, Adsorption of Congo red from aqueous solutions onto Ca-bentonite, 161 (2009) 126-131.
DOI: 10.1016/j.jhazmat.2008.03.063
Google Scholar
[43]
R. Mudzielwana, M.W. Gitari, P. Ndungu, Frontiers in chemistry, Enhanced As (III) and As (V) adsorption from aqueous solution by a clay based hybrid sorbent, 7 (2019).
DOI: 10.3389/fchem.2019.00913
Google Scholar
[44]
C. Almeida, N. Debacher, A. Downs, L. Cottet, C. Mello, Journal of colloid and interface science, Removal of methylene blue from colored effluents by adsorption on montmorillonite clay, 332 (2009) 46-53.
DOI: 10.1016/j.jcis.2008.12.012
Google Scholar
[45]
S. Hong, C. Wen, J. He, F. Gan, Y.-S. Ho, Journal of hazardous materials, Adsorption thermodynamics of methylene blue onto bentonite, 167 (2009) 630-633.
DOI: 10.1016/j.jhazmat.2009.01.014
Google Scholar
[46]
A. Rostami, M.A. Anbaz, H.R.E. Gahrooei, M. Arabloo, A. Bahadori, Egyptian Journal of Petroleum, Accurate estimation of CO2 adsorption on activated carbon with multi-layer feed-forward neural network (MLFNN) algorithm, 27 (2018) 65-73.
DOI: 10.1016/j.ejpe.2017.01.003
Google Scholar