Realization and Characterization of CH3NH3PbI3 /c-Si Heterojunction

Article Preview

Abstract:

In the present work we have reported the realization and characterization of CH3NH3PbI3/c-Si heterojunction. It was achieved by deposing CH3NH3PbI3 perovskite film on (P) doped single crystalline Silicon (c-Si) substrate by spin coating. The structural, optical and electrical properties of perovskite film were investigated. The electric characterization of the realized device was achieved through I-V and G-f measurements. The recorded I-V characteristic exhibits a rectifier behavior. This curve was used also to determine diode parameters; the ideality factor, the saturation current, the series resistance and the potential barrier. However, the conductance method was used to assess the interface state Nss via (G/ω) versus angular frequency ω curve. The results were used to justify the large values of the ideality factor and the series resistance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

364-374

Citation:

Online since:

January 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. De Wolf, J. Holovsky, S.-J. Moon, P. Löper, B. Niesen, M. Ledinsky, F.-J. Haug, J.-H. Yum, C. Ballif, Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance, J. Phys. Chem. Lett, 5(6) (2014) 1035-1039.

DOI: 10.1021/jz500279b

Google Scholar

[2] G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Gratzel, S. Sum, T. C. Mhaisalkar, Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3, Science, 342 (2013) 344- 347.

DOI: 10.1126/science.1243167

Google Scholar

[3] S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith, Electron-hole diffusion lengths exceeding 1 μm in an organometal trihalide perovskite absorber, Science 342 (2013) 341–344.

DOI: 10.1126/science.1243982

Google Scholar

[4] Y. Zhao, A. M. Nardes, K. Zhu, Solid-State Mesostructured Perovskite CH3NH3PbI3 Solar Cells: Charge Transport, Recombination, and Diffusion Length, J. Phys. Chem. Lett, 5 (2014) 490.

DOI: 10.1021/jz500003v

Google Scholar

[5] M. M. Tavakoli, L. Gu, Y. Gao, C. Reckmeier, J. He, A. Rogach,Y. Yao, Z. Fan, Fabrication of efficient planar perovskite solar cells using a one-step chemical vapor deposition method, Sci. Rep,5, (2015) 14083.

DOI: 10.1038/srep14083

Google Scholar

[6] G. Hodes, Perovskite-Based Solar Cells, Science, 342 (2013) 317-318.

Google Scholar

[7] M.J. Carnie, C. Charbonneau, M.L. Davies, J. Troughton, T.M. Watson, K. Wojciechowski, H. Henry Snaith, D. A. Worsley, A one-step low temperature processing route for organolead halide perovskite solar cells, Chem. Commun, 49 (2013) 7893.

DOI: 10.1039/c3cc44177f

Google Scholar

[8] F. Wang, D. Meng, X. Li, Z. Zhu, Z. Fu, Y. Lu, Influence of annealing temperature on the crystallization and ferroelectricity of perovskite CH3NH3PbI3 film, Appl. Surf. Sci. 357 (2015) 391.

DOI: 10.1016/j.apsusc.2015.09.023

Google Scholar

[9] L. K. Ono, M. R. Leyden, S. Wang, Y. Qi, Organometal halide perovskite thin films and solar cells by vapor deposition, J. Mater. Chem. A ,4 (2016) 6693- 6713.

DOI: 10.1039/c5ta08963h

Google Scholar

[10] X. Ren, Z. Yang, D. Yang, X. Zhang, D. Cui, Y. Liu, Q. Wei, H. Fana, S. F. Liu, Modulating crystal grain size and optoelectronic properties of perovskite films for solar cells by reaction temperature, Nanoscale, 8 (2016) 3816.

DOI: 10.1039/c5nr08935b

Google Scholar

[11] S. M. Jain, B. Philippe, E. M. J. Johansson, B.-W. Park, H. Rensmo,Vapor phase conversion of PbI2 to CH3NH3PbI3: spectroscopic evidence for formation of an intermediate phase, J. Mat Chem A 7 (2016).

Google Scholar

[12] Z. Liang, S. Shaohong Zhang, X. Xu, N. Wang, J. Wang, X. Wang, Z. Bi, G. Xu, N. Yuanc, J. Ding, A large grain size perovskite thin film with a dense structure for planar heterojunction solar cells via spray deposition under ambient conditions, RSC Adv., 5 (2015) 60562.

DOI: 10.1039/c5ra09110a

Google Scholar

[13] J. G. Tait, S.Manghooli,W. Qiu, L. Rakocevic, L. Kootstra,M. Jaysankar, C. A. Masse de la Huerta, U.W. Paetzold, R. Gehlhaar, D. Cheyns, P. Heremansa, J. Poortmans, Rapid composition screening for perovskite photovoltaics via concurrently pumped ultrasonic spray coating, J. Mater. Chem. A, 4 (2016) 3792.

DOI: 10.1039/c6ta00739b

Google Scholar

[14] H. Huang, J. Shi, L. Zhu, D. Li, Y. Luo, Q. Meng, Two-step ultrasonic spray deposition of CH3NH3PbI3 for efficient and largearea perovskite solar cell, Nano Energy, 27 ( 2016) 352.

DOI: 10.1016/j.nanoen.2016.07.026

Google Scholar

[15] I. Belaidi, F. Khelfaoui, N. Attaf, A. Azzizi and M. S. Aida, Solvent and Spinning Speed Effects on CH3NH3PbI3 Films Deposited by Spin Coating, Phys. Status Solidi A, (2019) 1900340.

DOI: 10.1002/pssa.201900340

Google Scholar

[16] A. Slonopas, B.J. Foley, J.J. Choi and M.C. Gupta, Charge transport in bulk CH3NH3PbI3 perovskite, J. Appl. Phys, 119 ( 2016), 074101.

Google Scholar

[17] J.J. Choi, X. Yang, Z.M. Norman, S.J.L. Billinge, J. S. Owen, Structure of Methylammonium Lead Iodide Within Mesoporous Titanium Dioxide: Active Material in High-Performance Perovskite Solar Cells, Nano Lett,14 (2014) 127.

DOI: 10.1021/nl403514x

Google Scholar

[18] J. Yu, X. Chen, Y. Wang, H. Zhou, M. Xue, Y. Xu, Z. Li, C. Ye, J. Zhang, P. A. van Aken, P. D. Lundac, H. Hao Wang, A high-performance self-powered broadband photodetector based on a CH3NH3PbI3 perovskite/ZnO nanorod array heterostructure, J. Mater. Chem. C, 47 (2016) 7302.

DOI: 10.1039/c6tc02097f

Google Scholar

[19] J. Qiu, Y. Qiu, K. Yan, M. Zhong, C. Mu, H. Yana, S. Yang, All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO2 nanowire arrays, Nanoscale, 5 (2013) 3245.

DOI: 10.1039/c3nr00218g

Google Scholar

[20] L. Atourki, E. Vega, B. Marí, M. Mollar, H. Ait Ahsaine, K. Bouabid, A. Ihlal, Role of the chemical substitution on the structural and luminescence properties of the mixed halide perovskite thin MAPbI3-xBrx (0<x <1) films, Appl. Surf. Sci., 371 (2016) 112 – 117.

DOI: 10.1016/j.apsusc.2016.02.207

Google Scholar

[21] L. K. Ono and Y. Qi, Surface and interface aspects of organometal halide perovskite materials and solar cells, J. Phys. Chem. Lett, 7 (22) (2016) 4764 - 4794.

DOI: 10.1021/acs.jpclett.6b01951

Google Scholar

[22] L. B. Patle, P. K. Labhane, V. R. Huseand, A. L. Chaudhari, Structural Analysis of Cu Doped TiO2 Nanoparticles using Williamson-Hall Method, IJSRSET, 1(5) (2015) 66-70.

Google Scholar

[23] Y. shi, CH3NH3PbI3 and CH3NH3PbI3-XClX in planar or mesoporous perovskite solar cells:comprehensive insight into the dependence of architecture on performance, J. Phys. Chem C, 119, 28 (2015) 15868 - 15873.

Google Scholar

[24] S. M. Sze, Physics of Semiconductor Devices, New York: Wiley, (1981).

Google Scholar

[25] H. Mathieu and H. Fanet, Physique des semiconducteurs et des composants électroniques, sixth ed., Dunod, Paris, (2009).

DOI: 10.3917/dunod.mathi.2009.01.0821

Google Scholar

[26] Qi Wang, Yuchuan Shao, Haipeng Xie, Lu Lyu,2Xiaoliang Liu,Yongli Gao, and Jinsong Huang1,Qualifying composition dependent p and n self-doping in CH3NH3PbI3, Appl. Phys lett 105 (2014) 163508.

DOI: 10.1063/1.4899051

Google Scholar

[27] C. Sah, R. N. Noyce and W. Shockley, Carrier Generation and Recombination in p-n Junctions and p-n Junction Characteristics. Proc. IRE., 45 (1957) 1228.

DOI: 10.1109/jrproc.1957.278528

Google Scholar

[28] J. M. Shah, Y.-L. Li, Th. Gessmann and E. F. Schubert, J. Appl. Phys., Experimental analysis and theoretical model for anomalously high ideality factors (n≫2.0) in AlGaN/GaN p-n junction diodes 94 (4) (2003).

DOI: 10.1063/1.1593218

Google Scholar

[29] M. Jing-Jing, J. Ke-Xin, L.Bing-Cheng, F. Fei, X. Hui, Z.Chao-Chao and C. Chang-Le, Rectifying and Photovoltage Properties of ZnO:Al/p-Si Heterojunction, Chin. Phys. Lett., (2010) 27107304.

DOI: 10.1088/0256-307x/27/10/107304

Google Scholar

[30] F.Z. Boutebakh, M. Lamri Zeggar, N. Attaf, M.S. Aida, Electrical properties and back contact study of CZTS/ZnS heterojunction, Optik 144 (2017) 180-190.

DOI: 10.1016/j.ijleo.2017.06.080

Google Scholar

[31] N. K. Raddy, Q. Ahsanulhaq, J.H. Kim and Y. B. Hahn, Behavior of n-ZnO nanorods/p-Si heterojunction devices at higher temperatures Appl. Phys. Lett, 92 (2008) 043127.

DOI: 10.1063/1.2839579

Google Scholar

[32] S. Mridha, D. Basak, Ultraviolet and visible photoresponse properties of n‐ZnO∕p‐Si Heterojunction, J. Appl. Phys.,101, (2007) 083102.

DOI: 10.1063/1.2724808

Google Scholar

[33] M. Hirasawa, T. Ishihara, T. Goto, K. Uchida, N. Miura, Magnetoabsorption of the lowest exciton in perovskite-type compound (CH3NH3)PbI3, Phys. B Condens. Matter. 201 (1994) 427–430.

DOI: 10.1016/0921-4526(94)91130-4

Google Scholar

[34] A. Tataroglu & R. E. Uyar, Analysis of density and constant time of interface state of MIS device, INDIAN J PURE & APPL PHYS, 54 (2016) 374-378.

Google Scholar

[35] H. M. Baran and A. Tataroˇglu, Determination of interface states and their time constant for Au/SnO2/n-Si (MOS) capacitors using admittance measurements, Chin. Phys. B, 22(4) (2013) 047303.

DOI: 10.1088/1674-1056/22/4/047303

Google Scholar